BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 28780632)

  • 1. HSP90: a promising broad-spectrum antiviral drug target.
    Wang Y; Jin F; Wang R; Li F; Wu Y; Kitazato K; Wang Y
    Arch Virol; 2017 Nov; 162(11):3269-3282. PubMed ID: 28780632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance.
    Geller R; Vignuzzi M; Andino R; Frydman J
    Genes Dev; 2007 Jan; 21(2):195-205. PubMed ID: 17234885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Heat Shock Proteins (HSP70 and HSP90) in Viral Infection.
    Lubkowska A; Pluta W; Strońska A; Lalko A
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiviral activity and RNA polymerase degradation following Hsp90 inhibition in a range of negative strand viruses.
    Connor JH; McKenzie MO; Parks GD; Lyles DS
    Virology; 2007 May; 362(1):109-19. PubMed ID: 17258257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubacin, an HDAC6 Selective Inhibitor, Reduces the Replication of the Japanese Encephalitis Virus via the Decrease of Viral RNA Synthesis.
    Lu CY; Chang YC; Hua CH; Chuang C; Huang SH; Kung SH; Hour MJ; Lin CW
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28468311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broad action of Hsp90 as a host chaperone required for viral replication.
    Geller R; Taguwa S; Frydman J
    Biochim Biophys Acta; 2012 Mar; 1823(3):698-706. PubMed ID: 22154817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of Hsp90 inhibitors.
    Solit DB; Chiosis G
    Drug Discov Today; 2008 Jan; 13(1-2):38-43. PubMed ID: 18190862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implication of B23/NPM1 in Viral Infections, Potential Uses of B23/NPM1 Inhibitors as Antiviral Therapy.
    Lobaina Y; Perera Y
    Infect Disord Drug Targets; 2019; 19(1):2-16. PubMed ID: 29589547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitors of virus replication: recent developments and prospects.
    Magden J; Kääriäinen L; Ahola T
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):612-21. PubMed ID: 15592828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsp90 inhibitor reduces porcine circovirus 2 replication in the porcine monocytic line 3D4/31.
    Liu J; Zhang X; Ma C; Jiang P; Yun S
    Virus Genes; 2017 Feb; 53(1):95-99. PubMed ID: 27557816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marine alkaloid oroidin analogues with antiviral potential: A novel class of synthetic compounds targeting the cellular chaperone Hsp90.
    Lillsunde KE; Tomašič T; Kikelj D; Tammela P
    Chem Biol Drug Des; 2017 Dec; 90(6):1147-1154. PubMed ID: 28580714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells.
    Kampmueller KM; Miller DJ
    J Virol; 2005 Jun; 79(11):6827-37. PubMed ID: 15890922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases.
    Nijhuis M; van Maarseveen NM; Boucher CA
    Handb Exp Pharmacol; 2009; (189):299-320. PubMed ID: 19048205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of heat-shock protein 90 in hepatitis E virus capsid trafficking.
    Zheng ZZ; Miao J; Zhao M; Tang M; Yeo AE; Yu H; Zhang J; Xia NS
    J Gen Virol; 2010 Jul; 91(Pt 7):1728-36. PubMed ID: 20219895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines and Their Role in Virus Infection.
    Mounce BC; Olsen ME; Vignuzzi M; Connor JH
    Microbiol Mol Biol Rev; 2017 Dec; 81(4):. PubMed ID: 28904024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hsp90 inhibitors reduce influenza virus replication in cell culture.
    Chase G; Deng T; Fodor E; Leung BW; Mayer D; Schwemmle M; Brownlee G
    Virology; 2008 Aug; 377(2):431-9. PubMed ID: 18570972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viral infections and sphingolipids.
    Schneider-Schaulies J; Schneider-Schaulies S
    Handb Exp Pharmacol; 2013; (216):321-40. PubMed ID: 23563664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay.
    Aviner R; Frydman J
    Cold Spring Harb Perspect Biol; 2020 Mar; 12(3):. PubMed ID: 30858229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Prospects and current data in antiviral chemotherapy].
    Huraux JM; Ingrand D; Agut H; Devillechabrolle A
    Rev Pneumol Clin; 1989; 45(3):99-105. PubMed ID: 2685967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The future of antivirals: broad-spectrum inhibitors.
    Debing Y; Neyts J; Delang L
    Curr Opin Infect Dis; 2015 Dec; 28(6):596-602. PubMed ID: 26524332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.