BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 28780633)

  • 1. LVC Timing in Infant Pig Swallowing and the Effect of Safe Swallowing.
    Gross A; Ohlemacher J; German R; Gould F
    Dysphagia; 2018 Feb; 33(1):51-62. PubMed ID: 28780633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-pharyngeal Swallow Effects of Recurrent Laryngeal Nerve Lesion on Bolus Shape and Airway Protection in an Infant Pig Model.
    Gould FDH; Yglesias B; Ohlemacher J; German RZ
    Dysphagia; 2017 Jun; 32(3):362-373. PubMed ID: 27873091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Physiologic Impact of Unilateral Recurrent Laryngeal Nerve (RLN) Lesion on Infant Oropharyngeal and Esophageal Performance.
    Gould FD; Lammers AR; Ohlemacher J; Ballester A; Fraley L; Gross A; German RZ
    Dysphagia; 2015 Dec; 30(6):714-22. PubMed ID: 26285799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central nervous system integration of sensorimotor signals in oral and pharyngeal structures: oropharyngeal kinematics response to recurrent laryngeal nerve lesion.
    Gould FD; Ohlemacher J; Lammers AR; Gross A; Ballester A; Fraley L; German RZ
    J Appl Physiol (1985); 2016 Mar; 120(5):495-502. PubMed ID: 26679618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of recurrent laryngeal nerve lesion on oropharyngeal muscle activity and sensorimotor integration in an infant pig model.
    DeLozier KR; Gould FDH; Ohlemacher J; Thexton AJ; German RZ
    J Appl Physiol (1985); 2018 Jul; 125(1):159-166. PubMed ID: 29648522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unilateral superior laryngeal nerve lesion in an animal model of dysphagia and its effect on sucking and swallowing.
    Ding P; Campbell-Malone R; Holman SD; Lukasik SL; Fukuhara T; Gierbolini-Norat EM; Thexton AJ; German RZ
    Dysphagia; 2013 Sep; 28(3):404-12. PubMed ID: 23417250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired Movement Scaling and Reduced Synchrony with Vestibule Closure Characterize Swallowing in Severe Dysphagia.
    Wong SM; Kamarunas E; Ludlow CL
    Dysphagia; 2020 Aug; 35(4):643-656. PubMed ID: 31630250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Preliminary Videofluoroscopic Investigation of Swallowing Physiology and Function in Individuals with Oculopharyngeal Muscular Dystrophy (OPMD).
    Waito AA; Steele CM; Peladeau-Pigeon M; Genge A; Argov Z
    Dysphagia; 2018 Dec; 33(6):789-802. PubMed ID: 29725764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maturation of the Coordination Between Respiration and Deglutition with and Without Recurrent Laryngeal Nerve Lesion in an Animal Model.
    Ballester A; Gould F; Bond L; Stricklen B; Ohlemacher J; Gross A; DeLozier K; Buddington R; Buddington K; Danos N; German R
    Dysphagia; 2018 Oct; 33(5):627-635. PubMed ID: 29476275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle activity and kinematics show different responses to recurrent laryngeal nerve lesion in mammal swallowing.
    Gould FDH; Lammers AR; Mayerl C; Ohlemacher J; German RZ
    J Neurophysiol; 2020 Dec; 124(6):1743-1753. PubMed ID: 32966748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swallow Safety in Infant Pigs With and Without Recurrent Laryngeal Nerve Lesion.
    Stricklen BM; Bond LE; Gould FDH; German RZ; Mayerl CJ
    Dysphagia; 2020 Dec; 35(6):978-984. PubMed ID: 32112144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal Sequence of Laryngeal Vestibule Closure and Reopening is Associated With Airway Protection.
    Shu K; Perera S; Mahoney AS; Mao S; Coyle JL; Sejdić E
    Laryngoscope; 2023 Mar; 133(3):521-527. PubMed ID: 35657100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Superior Laryngeal Nerve Lesion on Kinematics of Swallowing and Airway Protection in an Infant Pig Model.
    Lammers AR; Abid S; Ding P; German RZ
    Dysphagia; 2020 Dec; 35(6):907-917. PubMed ID: 32140904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific Vagus Nerve Lesion Have Distinctive Physiologic Mechanisms of Dysphagia.
    Gould FDH; Lammers AR; Mayerl CJ; German RZ
    Front Neurol; 2019; 10():1301. PubMed ID: 31920925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum lingual pressure impacts both swallowing safety and efficiency in individuals with amyotrophic lateral sclerosis.
    Robison RD; DiBiase L; Anderson A; Wymer JP; Plowman EK
    Neurogastroenterol Motil; 2023 Apr; 35(4):e14521. PubMed ID: 36573040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the Relationship Between Hyoid Bone Kinematics and Airway Protection in Swallowing.
    Smaoui S; Peladeau-Pigeon M; Steele CM
    J Speech Lang Hear Res; 2022 Feb; 65(2):419-430. PubMed ID: 34982956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swallowing function and medical diagnoses in infants suspected of Dysphagia.
    Newman LA; Keckley C; Petersen MC; Hamner A
    Pediatrics; 2001 Dec; 108(6):E106. PubMed ID: 11731633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of the Normalized Laryngeal Constriction Ratio in Normal and Disordered Swallowing.
    Miller M; Vose A; Rivet A; Smith-Sherry M; Humbert I
    Laryngoscope; 2020 Apr; 130(4):E190-E198. PubMed ID: 31448826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of maneuvers on swallowing function in a dysphagic oral cancer patient.
    Lazarus C; Logemann JA; Gibbons P
    Head Neck; 1993; 15(5):419-24. PubMed ID: 8407314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal characteristics of laryngeal penetration and aspiration in stroke patients.
    Kim YH; Han TR; Nam HS; Seo HG; Oh BM
    NeuroRehabilitation; 2019; 44(2):231-238. PubMed ID: 30856123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.