These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 28780647)

  • 21. Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men.
    Wang JS; Lee MY; Lien HY; Weng TP
    Int J Cardiol; 2014 Jan; 170(3):315-23. PubMed ID: 24286591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen exchange in muscle of young and old rats: muscle-vascular-pulmonary coupling.
    Poole DC; Ferreira LF
    Exp Physiol; 2007 Mar; 92(2):341-6. PubMed ID: 17185349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical influences on skeletal muscle vascular tone in humans: insight into contraction-induced rapid vasodilatation.
    Kirby BS; Carlson RE; Markwald RR; Voyles WF; Dinenno FA
    J Physiol; 2007 Sep; 583(Pt 3):861-74. PubMed ID: 17495044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Central and peripheral responses to static and dynamic stretch of skeletal muscle: mechano- and metaboreflex implications.
    Venturelli M; Cè E; Limonta E; Bisconti AV; Devoto M; Rampichini S; Esposito F
    J Appl Physiol (1985); 2017 Jan; 122(1):112-120. PubMed ID: 27856718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurogenic vasodilation in human skeletal muscle: possible role in contraction-induced hyperaemia.
    Joyner MJ; Halliwill JR
    Acta Physiol Scand; 2000 Apr; 168(4):481-8. PubMed ID: 10759585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise.
    Shen W; Zhang X; Zhao G; Wolin MS; Sessa W; Hintze TH
    Med Sci Sports Exerc; 1995 Aug; 27(8):1125-34. PubMed ID: 7476056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasma lactate concentration and muscle blood flow during dynamic exercise with negative-pressure breathing.
    Kamijo Y; Takeno Y; Sakai A; Inaki M; Okumoto T; Itoh J; Yanagidaira Y; Masuki S; Nose H
    J Appl Physiol (1985); 2000 Dec; 89(6):2196-205. PubMed ID: 11090568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions.
    Bentley RF; Poitras VJ; Hong T; Tschakovsky ME
    Exp Physiol; 2017 Jun; 102(6):621-634. PubMed ID: 28397384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle blood-flow dynamics at exercise onset: do the limbs differ?
    Tschakovsky ME; Saunders NR; Webb KA; O'Donnell DE
    Med Sci Sports Exerc; 2006 Oct; 38(10):1811-8. PubMed ID: 17019304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenosine and nitric oxide in exercise-induced human skeletal muscle vasodilatation.
    Rådegran G; Hellsten Y
    Acta Physiol Scand; 2000 Apr; 168(4):575-91. PubMed ID: 10759594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow.
    Takano H; Morita T; Iida H; Asada K; Kato M; Uno K; Hirose K; Matsumoto A; Takenaka K; Hirata Y; Eto F; Nagai R; Sato Y; Nakajima T
    Eur J Appl Physiol; 2005 Sep; 95(1):65-73. PubMed ID: 15959798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.
    Joyner MJ; Casey DP
    Physiol Rev; 2015 Apr; 95(2):549-601. PubMed ID: 25834232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Skeletal muscle blood flow in humans and its regulation during exercise.
    Saltin B; Rådegran G; Koskolou MD; Roach RC
    Acta Physiol Scand; 1998 Mar; 162(3):421-36. PubMed ID: 9578388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arterial blood pressure and cardiovascular responses to yoga practice.
    Miles SC; Chun-Chung C; Hsin-Fu L; Hunter SD; Dhindsa M; Nualnim N; Tanaka H
    Altern Ther Health Med; 2013; 19(1):38-45. PubMed ID: 23341425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor.
    Hudlicka O; Brown MD
    J Vasc Res; 2009; 46(5):504-12. PubMed ID: 19556804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aging alters the contribution of nitric oxide to regional muscle hemodynamic control at rest and during exercise in rats.
    Hirai DM; Copp SW; Hageman KS; Poole DC; Musch TI
    J Appl Physiol (1985); 2011 Oct; 111(4):989-98. PubMed ID: 21757576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal muscle vasodilatation at the onset of exercise.
    Clifford PS
    J Physiol; 2007 Sep; 583(Pt 3):825-33. PubMed ID: 17615103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adrenergic and non-adrenergic control of active skeletal muscle blood flow: implications for blood pressure regulation during exercise.
    Holwerda SW; Restaino RM; Fadel PJ
    Auton Neurosci; 2015 Mar; 188():24-31. PubMed ID: 25467222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exercise hyperaemia: magnitude and aspects on regulation in humans.
    Saltin B
    J Physiol; 2007 Sep; 583(Pt 3):819-23. PubMed ID: 17640931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute Effect of Static Stretching Exercise on Arterial Stiffness in Healthy Young Adults.
    Yamato Y; Hasegawa N; Sato K; Hamaoka T; Ogoh S; Iemitsu M
    Am J Phys Med Rehabil; 2016 Oct; 95(10):764-70. PubMed ID: 27088470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.