These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 28780653)
21. Intraguild Predation in Heteroptera: Effects of Density and Predator Identity on Dipteran Prey. Brahma S; Sharma D; Kundu M; Saha N; Saha GK; Aditya G Neotrop Entomol; 2015 Aug; 44(4):374-84. PubMed ID: 26174962 [TBL] [Abstract][Full Text] [Related]
23. Resistance to a chemical pesticide increases vulnerability to a biopesticide: Effects on direct mortality and mortality by predation. Delnat V; Tran TT; Janssens L; Stoks R Aquat Toxicol; 2019 Nov; 216():105310. PubMed ID: 31580997 [TBL] [Abstract][Full Text] [Related]
24. Pre-selecting resistance against individual Bti Cry toxins facilitates the development of resistance to the Bti toxins cocktail. Stalinski R; Tetreau G; Gaude T; Després L J Invertebr Pathol; 2014 Jun; 119():50-3. PubMed ID: 24768915 [TBL] [Abstract][Full Text] [Related]
25. The Efficacy of the Dawson D; Salice CJ; Subbiah S J Am Mosq Control Assoc; 2019 Jun; 35(2):97-106. PubMed ID: 31442132 [TBL] [Abstract][Full Text] [Related]
26. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins. Stalinski R; Laporte F; Després L; Tetreau G Environ Microbiol; 2016 Mar; 18(3):1022-36. PubMed ID: 26663676 [TBL] [Abstract][Full Text] [Related]
27. Production of the bioinsecticide Bacillus thuringiensis subsp. israelensis with deltamethrin increases toxicity towards mosquito larvae. Tetreau G; Patil CD; Chandor-Proust A; Salunke BK; Patil SV; Després L Lett Appl Microbiol; 2013 Aug; 57(2):151-6. PubMed ID: 23594143 [TBL] [Abstract][Full Text] [Related]
29. Potential for Sulfoxaflor to Improve Conservation Biological Control of Aphis glycines (Hemiptera: Aphididae) in Soybean. Tran AK; Alves TM; Koch RL J Econ Entomol; 2016 Oct; 109(5):2105-14. PubMed ID: 27535848 [TBL] [Abstract][Full Text] [Related]
30. Mosquito control based on Bacillus thuringiensis israelensis (Bti) interrupts artificial wetland food chains. Allgeier S; Friedrich A; Brühl CA Sci Total Environ; 2019 Oct; 686():1173-1184. PubMed ID: 31412513 [TBL] [Abstract][Full Text] [Related]
31. Effect of predation on Anopheles larvae by five sympatric insect families in coastal Kenya. Muiruri SK; Mwangangi JM; Carlson J; Kabiru EW; Kokwaro E; Githure J; Mbogo CM; Beier JC J Vector Borne Dis; 2013 Mar; 50(1):45-50. PubMed ID: 23703439 [TBL] [Abstract][Full Text] [Related]
32. Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus. DE Lara AP; Lorenzon LB; Vianna AM; Santos FD; Pinto LS; Aires Berne ME; Leite FP Parasitology; 2016 Oct; 143(12):1665-71. PubMed ID: 27573677 [TBL] [Abstract][Full Text] [Related]
33. Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes. Op De Beeck L; Janssens L; Stoks R Ecol Appl; 2016 Mar; 26(2):355-66. PubMed ID: 27209779 [TBL] [Abstract][Full Text] [Related]
34. Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Romeis J; Dutton A; Bigler F J Insect Physiol; 2004; 50(2-3):175-83. PubMed ID: 15019519 [TBL] [Abstract][Full Text] [Related]
35. Thiamethoxam Toxicity and Effects on Consumption Behavior in Orius insidiosus (Hemiptera: Anthocoridae) on Soybean. Camargo C; Hunt TE; Giesler LJ; Siegfried BD Environ Entomol; 2017 Jun; 46(3):693-699. PubMed ID: 28369319 [TBL] [Abstract][Full Text] [Related]
36. Impact of Feeding on Contaminated Prey on the Life Parameters of Nesidiocoris Tenuis (Hemiptera: Miridae) Adults. Wanumen AC; Sánchez-Ramos I; Viñuela E; Medina P; Adán Á J Insect Sci; 2016; 16(1):. PubMed ID: 27694345 [TBL] [Abstract][Full Text] [Related]
37. Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Paris M; Tetreau G; Laurent F; Lelu M; Despres L; David JP Pest Manag Sci; 2011 Jan; 67(1):122-8. PubMed ID: 21162152 [TBL] [Abstract][Full Text] [Related]
38. Toxicity and cytotoxicity of the insecticide imidacloprid in the midgut of the predatory bug, Podisus nigrispinus. Martínez LC; Plata-Rueda A; Gonçalves WG; Freire AFPA; Zanuncio JC; Bozdoğan H; Serrão JE Ecotoxicol Environ Saf; 2019 Jan; 167():69-75. PubMed ID: 30296698 [TBL] [Abstract][Full Text] [Related]
39. A multi-year field study to evaluate the environmental fate and agronomic effects of insecticide mixtures. Whiting SA; Strain KE; Campbell LA; Young BG; Lydy MJ Sci Total Environ; 2014 Nov; 497-498():534-542. PubMed ID: 25163650 [TBL] [Abstract][Full Text] [Related]
40. Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects. Lawler SP; Dritz DA; Christiansen JA; Cornel AJ Pest Manag Sci; 2007 Mar; 63(3):234-40. PubMed ID: 16900577 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]