These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28780705)

  • 1. A viscoelastic anisotropic hyperelastic constitutive model of the human cornea.
    Whitford C; Movchan NV; Studer H; Elsheikh A
    Biomech Model Mechanobiol; 2018 Feb; 17(1):19-29. PubMed ID: 28780705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density.
    Whitford C; Studer H; Boote C; Meek KM; Elsheikh A
    J Mech Behav Biomed Mater; 2015 Feb; 42():76-87. PubMed ID: 25460928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure-based numerical simulation of the mechanical behaviour of ocular tissue.
    Zhou D; Abass A; Eliasy A; Studer HP; Movchan A; Movchan N; Elsheikh A
    J R Soc Interface; 2019 May; 16(154):20180685. PubMed ID: 31039694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for the human cornea: constitutive formulation and numerical analysis.
    Pandolfi A; Manganiello F
    Biomech Model Mechanobiol; 2006 Nov; 5(4):237-46. PubMed ID: 16444515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microstructurally-based finite element model of the incised human cornea.
    Pinsky PM; Datye DV
    J Biomech; 1991; 24(10):907-22. PubMed ID: 1744149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inverse finite element method for determining the anisotropic properties of the cornea.
    Nguyen TD; Boyce BL
    Biomech Model Mechanobiol; 2011 Jun; 10(3):323-37. PubMed ID: 20602142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A viscoelastic model for human myocardium.
    Nordsletten D; Capilnasiu A; Zhang W; Wittgenstein A; Hadjicharalambous M; Sommer G; Sinkus R; Holzapfel GA
    Acta Biomater; 2021 Nov; 135():441-457. PubMed ID: 34487858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of corneal biomechanical and optical behavior to material parameters using design of experiments method.
    Xu M; Lerner AL; Funkenbusch PD; Richhariya A; Yoon G
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):287-296. PubMed ID: 29602301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
    Caner FC; Guo Z; Moran B; Bazant ZP; Carol I
    J Biomech Eng; 2007 Oct; 129(5):632-41. PubMed ID: 17887888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo.
    Sinha Roy A; Kurian M; Matalia H; Shetty R
    J Mech Behav Biomed Mater; 2015 Aug; 48():173-182. PubMed ID: 25955559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue.
    Bischoff JE; Arruda EM; Grosh K
    Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse solution of corneal material parameters based on non-contact tonometry: A comparative study of different constitutive models.
    Huang L; Shen M; Liu T; Zhang Y; Wang Y
    J Biomech; 2020 Nov; 112():110055. PubMed ID: 33039923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon.
    Khayyeri H; Gustafsson A; Heuijerjans A; Matikainen MK; Julkunen P; Eliasson P; Aspenberg P; Isaksson H
    PLoS One; 2015; 10(6):e0126869. PubMed ID: 26030436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive laws for biomechanical modeling of refractive surgery.
    Bryant MR; McDonnell PJ
    J Biomech Eng; 1996 Nov; 118(4):473-81. PubMed ID: 8950650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis.
    Glass DH; Roberts CJ; Litsky AS; Weber PA
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3919-26. PubMed ID: 18539936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.