These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 28780856)

  • 1. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis.
    Zhang X; MacMillan DWC
    J Am Chem Soc; 2017 Aug; 139(33):11353-11356. PubMed ID: 28780856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids.
    Chu L; Lipshultz JM; MacMillan DW
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7929-33. PubMed ID: 26014029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoredox cross-electrophile coupling in DNA-encoded chemistry.
    Kölmel DK; Ratnayake AS; Flanagan ME
    Biochem Biophys Res Commun; 2020 Dec; 533(2):201-208. PubMed ID: 32414574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective sp
    Le C; Liang Y; Evans RW; Li X; MacMillan DWC
    Nature; 2017 Jul; 547(7661):79-83. PubMed ID: 28636596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis.
    Zuo Z; Cong H; Li W; Choi J; Fu GC; MacMillan DW
    J Am Chem Soc; 2016 Feb; 138(6):1832-5. PubMed ID: 26849354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regioselective Alkylative Cross-Coupling of Remote Unactivated C(
    Thullen SM; Treacy SM; Rovis T
    J Am Chem Soc; 2019 Sep; 141(36):14062-14067. PubMed ID: 31478370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective benzylic C-H arylation via photoredox and nickel dual catalysis.
    Cheng X; Lu H; Lu Z
    Nat Commun; 2019 Aug; 10(1):3549. PubMed ID: 31391466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Electron Transmetalation: Photoredox/Nickel Dual Catalytic Cross-Coupling of Secondary Alkyl β-Trifluoroboratoketones and -esters with Aryl Bromides.
    Tellis JC; Amani J; Molander GA
    Org Lett; 2016 Jun; 18(12):2994-7. PubMed ID: 27265019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching on elusive organometallic mechanisms with photoredox catalysis.
    Terrett JA; Cuthbertson JD; Shurtleff VW; MacMillan DW
    Nature; 2015 Aug; 524(7565):330-4. PubMed ID: 26266976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt-catalyzed ortho alkylation of aromatic imines with primary and secondary alkyl halides.
    Gao K; Yoshikai N
    J Am Chem Soc; 2013 Jun; 135(25):9279-82. PubMed ID: 23758603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioetherification via Photoredox/Nickel Dual Catalysis.
    Jouffroy M; Kelly CB; Molander GA
    Org Lett; 2016 Feb; 18(4):876-9. PubMed ID: 26852821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct β-alkylation of aldehydes via photoredox organocatalysis.
    Terrett JA; Clift MD; MacMillan DW
    J Am Chem Soc; 2014 May; 136(19):6858-61. PubMed ID: 24754456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct, enantioselective α-alkylation of aldehydes using simple olefins.
    Capacci AG; Malinowski JT; McAlpine NJ; Kuhne J; MacMillan DWC
    Nat Chem; 2017 Nov; 9(11):1073-1077. PubMed ID: 29064486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallaphotoredox Difluoromethylation of Aryl Bromides.
    Bacauanu V; Cardinal S; Yamauchi M; Kondo M; Fernández DF; Remy R; MacMillan DWC
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12543-12548. PubMed ID: 30067304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides.
    Noble A; McCarver SJ; MacMillan DW
    J Am Chem Soc; 2015 Jan; 137(2):624-7. PubMed ID: 25521443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis.
    Zhang M; Li N; Tao X; Ruzi R; Yu S; Zhu C
    Chem Commun (Camb); 2017 Sep; 53(73):10228-10231. PubMed ID: 28861564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Acylation of C(sp(3))-H Bonds Enabled by Nickel and Photoredox Catalysis.
    Joe CL; Doyle AG
    Angew Chem Int Ed Engl; 2016 Mar; 55(12):4040-3. PubMed ID: 26890705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative [1,2]-Brook Rearrangements Exploiting Single-Electron Transfer: Photoredox-Catalyzed Alkylations and Arylations.
    Deng Y; Liu Q; Smith AB
    J Am Chem Soc; 2017 Jul; 139(28):9487-9490. PubMed ID: 28691820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective α-Alkylation of Aldehydes by Photoredox Organocatalysis: Rapid Access to Pharmacophore Fragments from β-Cyanoaldehydes.
    Welin ER; Warkentin AA; Conrad JC; MacMillan DW
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9668-72. PubMed ID: 26130043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile Alkylation of (Hetero)Aryl Iodides with Ketones via β-C(sp
    Zhu RY; Liu LY; Park HS; Hong K; Wu Y; Senanayake CH; Yu JQ
    J Am Chem Soc; 2017 Nov; 139(45):16080-16083. PubMed ID: 29086554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.