BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28781203)

  • 1. Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery.
    Teh YY; Lee KT; Chen WH; Lin SC; Sheen HK; Tan IS
    Bioresour Technol; 2017 Dec; 246():20-27. PubMed ID: 28781203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar.
    Cao L; Yu IKM; Cho DW; Wang D; Tsang DCW; Zhang S; Ding S; Wang L; Ok YS
    Bioresour Technol; 2019 Feb; 273():251-258. PubMed ID: 30448676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract.
    Tong KTX; Tan IS; Foo HCY; Tiong ACY; Lam MK; Lee KT
    Bioresour Technol; 2021 Dec; 342():125880. PubMed ID: 34592620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High yield production of sugars from deproteinated palm kernel cake under microwave irradiation via dilute sulfuric acid hydrolysis.
    Fan SP; Jiang LQ; Chia CH; Fang Z; Zakaria S; Chee KL
    Bioresour Technol; 2014 Feb; 153():69-78. PubMed ID: 24342947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives.
    Hadiya V; Popat K; Vyas S; Varjani S; Vithanage M; Kumar Gupta V; Núñez Delgado A; Zhou Y; Loke Show P; Bilal M; Zhang Z; Sillanpää M; Sabyasachi Mohanty S; Patel Z
    Bioresour Technol; 2022 Jul; 355():127303. PubMed ID: 35562022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentative lactic acid production from seaweed hydrolysate using Lactobacillus sp. And Weissella sp.
    Nagarajan D; Oktarina N; Chen PT; Chen CY; Lee DJ; Chang JS
    Bioresour Technol; 2022 Jan; 344(Pt A):126166. PubMed ID: 34678452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave assisted acid hydrolysis for bioethanol fuel production from sago pith waste.
    Thangavelu SK; Rajkumar T; Pandi DK; Ahmed AS; Ani FN
    Waste Manag; 2019 Mar; 86():80-86. PubMed ID: 30902242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae.
    Soliman RM; Younis SA; El-Gendy NS; Mostafa SSM; El-Temtamy SA; Hashim AI
    J Appl Microbiol; 2018 Aug; 125(2):422-440. PubMed ID: 29675837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production.
    Chai CY; Tan IS; Foo HCY; Lam MK; Tong KTX; Lee KT
    Bioresour Technol; 2021 Jun; 330():124930. PubMed ID: 33735730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentable sugars production from wheat bran and rye bran: response surface model optimization of dilute sulfuric acid hydrolysis.
    Demirel F; Germec M; Turhan I
    Environ Technol; 2022 Oct; 43(24):3779-3800. PubMed ID: 34029158
    [No Abstract]   [Full Text] [Related]  

  • 11. Pretreatment of lignocellulosic biomass from sugar bagasse under microwave assisted dilute acid hydrolysis for biobutanol production.
    Shangdiar S; Lin YC; Ponnusamy VK; Wu TY
    Bioresour Technol; 2022 Oct; 361():127724. PubMed ID: 35917859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept.
    Yuan Y; Macquarrie DJ
    Bioresour Technol; 2015 Dec; 198():819-27. PubMed ID: 26454369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Bio-Ethanol by Integrating Microwave-Assisted Dilute Sulfuric Acid Pretreated Sugarcane Bagasse Slurry with Molasses.
    Yu N; Tan L; Sun ZY; Tang YQ; Kida K
    Appl Biochem Biotechnol; 2018 May; 185(1):191-206. PubMed ID: 29101734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.
    Chimentão RJ; Lorente E; Gispert-Guirado F; Medina F; López F
    Carbohydr Polym; 2014 Oct; 111():116-24. PubMed ID: 25037336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of galactose uptake for bioethanol production from Eucheuma denticulatum hydrolysate using galactose-adapted yeasts.
    Kim J; Sunwoo I; Jo H; Kim Y; Kim SK; Jeong GT
    Bioprocess Biosyst Eng; 2023 Jun; 46(6):839-850. PubMed ID: 37004559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation.
    Greetham D; Adams JM; Du C
    Sci Rep; 2020 Jun; 10(1):9728. PubMed ID: 32546695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties.
    Mohamed BA; Kim CS; Ellis N; Bi X
    Bioresour Technol; 2016 Feb; 201():121-32. PubMed ID: 26642217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol.
    Tan IS; Lee KT
    Carbohydr Polym; 2015 Jun; 124():311-21. PubMed ID: 25839825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor.
    Ra CH; Kim MJ; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2017 Mar; 40(3):373-381. PubMed ID: 27830360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different process strategies for bioethanol production from Eucheuma cottonii: An economic study.
    Tan IS; Lee KT
    Bioresour Technol; 2016 Jan; 199():336-346. PubMed ID: 26283313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.