These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28781203)

  • 21. Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar - A review.
    Fakayode OA; Aboagarib EAA; Zhou C; Ma H
    Bioresour Technol; 2020 Feb; 297():122408. PubMed ID: 31767426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microwave-assisted acid hydrolysis of konjac products for determining the konjac powder content.
    Tanaka Y; Okamoto K; Matsushima A; Ota T; Matsumoto Y; Akasaki T
    Anal Sci; 2013; 29(11):1049-53. PubMed ID: 24212730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochar from commercially cultivated seaweed for soil amelioration.
    Roberts DA; Paul NA; Dworjanyn SA; Bird MI; de Nys R
    Sci Rep; 2015 Apr; 5():9665. PubMed ID: 25856799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macroalgae as a source of sugar and detoxifier biochar for polyhydroxyalkanoates production by Halomonas sp. YLGW01 under the unsterile condition.
    Bhatia SK; Hwang JH; Oh SJ; Kim HJ; Shin N; Choi TR; Kim HJ; Jeon JM; Yoon JJ; Yang YH
    Bioresour Technol; 2023 Sep; 384():129290. PubMed ID: 37290712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review.
    Selvam S M; Paramasivan B
    Chemosphere; 2022 Jan; 286(Pt 1):131631. PubMed ID: 34315073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator.
    Azizi N; Najafpour G; Younesi H
    Int J Biol Macromol; 2017 Aug; 101():1029-1040. PubMed ID: 28385521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of carbon nanotubes using biochar as precursor material under microwave irradiation.
    Hildago-Oporto P; Navia R; Hunter R; Coronado G; Gonzalez ME
    J Environ Manage; 2019 Aug; 244():83-91. PubMed ID: 31108314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation.
    Wang X; Liu X; Wang G
    J Integr Plant Biol; 2011 Mar; 53(3):246-52. PubMed ID: 21205190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover.
    Shi J; Pu Y; Yang B; Ragauskas A; Wyman CE
    Bioresour Technol; 2011 May; 102(10):5952-61. PubMed ID: 21463933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dilute acid pretreatment and enzymatic hydrolysis of sorghum biomass for sugar recovery--a statistical approach.
    Akanksha K; Prasad A; Sukumaran RK; Nampoothiri M; Pandey A; Rao SS; Parameswaran B
    Indian J Exp Biol; 2014 Nov; 52(11):1082-9. PubMed ID: 25434103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic saccharification of dilute acid pretreated eucalyptus chips for fermentable sugar production.
    Wei W; Wu S; Liu L
    Bioresour Technol; 2012 Apr; 110():302-7. PubMed ID: 22325899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst.
    Dong Q; Li H; Niu M; Luo C; Zhang J; Qi B; Li X; Zhong W
    Bioresour Technol; 2018 Oct; 266():284-290. PubMed ID: 29982049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capability of Thai Mission grass (Pennisetum polystachyon) as a new weedy lignocellulosic feedstock for production of monomeric sugar.
    Tatijarern P; Prasertwasu S; Komalwanich T; Chaisuwan T; Luengnaruemitchai A; Wongkasemjit S
    Bioresour Technol; 2013 Sep; 143():423-30. PubMed ID: 23819979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microwave irradiation pretreated fermentation of bioethanol production from Chlorella vulgaris Biomasses: Comparative analysis of response surface methodology and artificial neural network techniques.
    Shenbagamuthuraman V; Kasianantham N
    Bioresour Technol; 2023 Dec; 390():129867. PubMed ID: 37832853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).
    Meinita MD; Hong YK; Jeong GT
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):123-8. PubMed ID: 21909670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dilute-acid pretreatment of distillers' grains and corn fiber.
    Noureddini H; Byun J
    Bioresour Technol; 2010 Feb; 101(3):1060-7. PubMed ID: 19773157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification.
    Cara C; Ruiz E; Oliva JM; Sáez F; Castro E
    Bioresour Technol; 2008 Apr; 99(6):1869-76. PubMed ID: 17498947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave-assisted in-situ elimination of primary tars over biochar: Low temperature behaviours and mechanistic insights.
    Luo H; Bao L; Wang H; Kong L; Sun Y
    Bioresour Technol; 2018 Nov; 267():333-340. PubMed ID: 30029179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2013 Oct; 171(3):771-85. PubMed ID: 23892623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production.
    Yazdani P; Zamani A; Karimi K; Taherzadeh MJ
    Bioresour Technol; 2015 Jan; 176():196-202. PubMed ID: 25461003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.