BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28781702)

  • 1. An improved preparation of phorbol from croton oil.
    Pagani A; Gaeta S; Savchenko AI; Williams CM; Appendino G
    Beilstein J Org Chem; 2017; 13():1361-1367. PubMed ID: 28781702
    [No Abstract]   [Full Text] [Related]  

  • 2. Cytotoxic phorbol esters of Croton tiglium.
    Zhang XL; Wang L; Li F; Yu K; Wang MK
    J Nat Prod; 2013 May; 76(5):858-64. PubMed ID: 23701597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biphasic alcoholysis coupled with high-speed countercurrent chromatography for high performance on separating phorbol from Croton tiglium Linn extracts.
    Fan JP; He BT; Gao Y; Xie CF; Chen HP; Peng HL
    J Sep Sci; 2023 Apr; 46(8):e2200984. PubMed ID: 36795010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Five new phorbol esters with cytotoxic and selective anti-inflammatory activities from Croton tiglium.
    Wang JF; Yang SH; Liu YQ; Li DX; He WJ; Zhang XX; Liu YH; Zhou XJ
    Bioorg Med Chem Lett; 2015 May; 25(9):1986-9. PubMed ID: 25819096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Croton megalobotrys Müll Arg. traditional medicine in HIV/AIDS management: Documentation of patient use, in vitro activation of latent HIV-1 provirus, and isolation of active phorbol esters.
    Tietjen I; Ngwenya BN; Fotso G; Williams DE; Simonambango S; Ngadjui BT; Andersen RJ; Brockman MA; Brumme ZL; Andrae-Marobela K
    J Ethnopharmacol; 2018 Jan; 211():267-277. PubMed ID: 28970153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [GC-MS analysis of chemical components in seeds oil from Croton tiglium].
    Lan M; Wan P; Wang ZY; Huang XL
    Zhong Yao Cai; 2012 Jul; 35(7):1105-8. PubMed ID: 23252276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dry-column chromatographic isolation of fatty acid esters of phorbol from croton oil.
    Ocken PR
    J Lipid Res; 1969 Jul; 10(4):460-2. PubMed ID: 4307834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phorbol ester-type diterpenoids from the twigs and leaves of Croton tiglium.
    Jiang L; Zhang YB; Jiang SQ; Zhou YD; Luo D; Niu QW; Qian YR; Li YL; Wang GC
    J Asian Nat Prod Res; 2017 Dec; 19(12):1191-1197. PubMed ID: 28374632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oleic acid exhibits an expressive anti-inflammatory effect in croton oil-induced irritant contact dermatitis without the occurrence of toxicological effects in mice.
    Pegoraro NS; Camponogara C; Cruz L; Oliveira SM
    J Ethnopharmacol; 2021 Mar; 267():113486. PubMed ID: 33091495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptic Epoxytiglianes from the Kernels of the Blushwood Tree (
    Chianese G; Amin HIM; Maioli C; Reddell P; Parsons P; Cullen J; Johns J; Handoko H; Boyle G; Appendino G; Taglialatela-Scafati O; Gaeta S
    J Nat Prod; 2022 Aug; 85(8):1959-1966. PubMed ID: 35973043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nasturtium officinale R. Br. effectively reduces the skin inflammation induced by croton oil via glucocorticoid receptor-dependent and NF-κB pathways without causing toxicological effects in mice.
    Camponogara C; Silva CR; Brusco I; Piana M; Faccin H; de Carvalho LM; Schuch A; Trevisan G; Oliveira SM
    J Ethnopharmacol; 2019 Jan; 229():190-204. PubMed ID: 30339978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models.
    Oliveira-Tintino CDM; Pessoa RT; Fernandes MNM; Alcântara IS; da Silva BAF; de Oliveira MRC; Martins AOBPB; da Silva MDS; Tintino SR; Rodrigues FFG; da Costa JGM; de Lima SG; Kerntopf MR; da Silva TG; de Menezes IRA
    Phytomedicine; 2018 Mar; 41():82-95. PubMed ID: 29519324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of 35% trichloroacetic acid-Croton oil and 35% glycolic acid-Croton oil compared to 35% phenol-Croton oil Hetter's very heavy formula for deep chemical peel.
    Lemes BM; da Silva Justo A; Lin EM; Capote ACMO; Neves AKL; Machinski I; Pereira AV; Koga AY; Lipinski LC; Beltrame FL; Miot HA; Wambier CG
    J Am Acad Dermatol; 2022 Nov; 87(5):1227-1229. PubMed ID: 35863466
    [No Abstract]   [Full Text] [Related]  

  • 14. Modeling and Optimization of Biodiesel Production from Croton macrostachyus Leaves Oil.
    Jiru EB; Aklilu EG; Kasirajan R; Ancha VR
    Appl Biochem Biotechnol; 2022 Dec; 194(12):6037-6052. PubMed ID: 35876999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the Activity of Croton tiglium Oil in Hetter's Very Heavy Phenol-Croton Oil Chemical Peels.
    Justo AS; Lemes BM; Nunes B; Antunes KA; Capote ACMO; Lipinski LC; Campagnoli EB; Emiliano J; Meurer EC; Ezemma O; Miot HA; Beltrame FL; Wambier CG
    Dermatol Surg; 2021 Jul; 47(7):944-946. PubMed ID: 33731575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tephrosia purpurea alleviates phorbol ester-induced tumor promotion response in murine skin.
    Saleem M; Ahmed Su ; Alam A; Sultana S
    Pharmacol Res; 2001 Feb; 43(2):135-44. PubMed ID: 11243714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenol-croton oil peel: establishing an animal model for scientific investigation.
    Larson DL; Karmo F; Hetter GP
    Aesthet Surg J; 2009; 29(1):47-53. PubMed ID: 19233006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid method for isolating phorbol from croton oil.
    Cairnes DA; Mirvish SS; Wallcave L; Nagel DL; Smith JW
    Cancer Lett; 1981 Oct; 14(1):85-91. PubMed ID: 7296545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crotofolane-Type Diterpenoids: Crotocascarins R-V, Rearranged Trinorcrotofolane: Crotocascarin δ and a Phorbol Derivative from the Leaves of Croton cascarilloides.
    Kawakami S; Inagaki M; Nishimura M; Otsuka H; Matsunami K; Nehira T; Shinzato T
    Chem Pharm Bull (Tokyo); 2022; 70(4):286-292. PubMed ID: 35370206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Croton oil- and benzo(a)pyrene-induced changes in cyclic adenosine 3':5'-monophosphate and cyclic guanosine 3':5'-monophosphate phosphodiesterase activities in mouse epidermis.
    Verma AK; Froscio M; Murray AW
    Cancer Res; 1976 Jan; 36(1):81-7. PubMed ID: 174815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.