BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28781714)

  • 1. Generation, repair and replication of guanine oxidation products.
    Kino K; Hirao-Suzuki M; Morikawa M; Sakaga A; Miyazawa H
    Genes Environ; 2017; 39():21. PubMed ID: 28781714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contiguous 2,2,4-triamino-5(2H)-oxazolone obstructs DNA synthesis by DNA polymerases α, β, η, ι, κ, REV1 and Klenow Fragment exo-, but not by DNA polymerase ζ.
    Suzuki M; Kino K; Kawada T; Oyoshi T; Morikawa M; Kobayashi T; Miyazawa H
    J Biochem; 2016 Mar; 159(3):323-9. PubMed ID: 26491064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of nucleotide insertion opposite 2,2,4-triamino-5(2H)-oxazolone by eukaryotic B- and Y-family DNA polymerases.
    Suzuki M; Kino K; Kawada T; Morikawa M; Kobayashi T; Miyazawa H
    Chem Res Toxicol; 2015 Jun; 28(6):1307-16. PubMed ID: 26010525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DNA oligomer containing 2,2,4-triamino-5(2H)-oxazolone is incised by human NEIL1 and NTH1.
    Kino K; Takao M; Miyazawa H; Hanaoka F
    Mutat Res; 2012 Jun; 734(1-2):73-7. PubMed ID: 22465744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorella virus pyrimidine dimer glycosylase and Escherichia coli endonucleases IV and V have incision activity on 2,2,4-triamino-5(2H)-oxazolone.
    Kino K; Suzuki M; Morikawa M; Kobayashi T; Iwai S; Miyazawa H
    Genes Environ; 2015; 37():22. PubMed ID: 27350817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculating distortions of short DNA duplexes with base pairing between an oxidatively damaged guanine and a guanine.
    Suzuki M; Kino K; Morikawa M; Kobayashi T; Miyazawa H
    Molecules; 2014 Jul; 19(8):11030-44. PubMed ID: 25072203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible cause of G-C-->C-G transversion mutation by guanine oxidation product, imidazolone.
    Kino K; Sugiyama H
    Chem Biol; 2001 Apr; 8(4):369-78. PubMed ID: 11325592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of the stabilization energies of oxidatively damaged guanine base pairs with guanine.
    Suzuki M; Kino K; Morikawa M; Kobayashi T; Komori R; Miyazawa H
    Molecules; 2012 Jun; 17(6):6705-15. PubMed ID: 22728364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of stability of base pairs containing an oxazolone on DNA elongation.
    Suzuki M; Ohtsuki K; Kino K; Kobayashi T; Morikawa M; Kobayashi T; Miyazawa H
    J Nucleic Acids; 2014; 2014():178350. PubMed ID: 25574383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of guanine oxidation products in double-stranded DNA and proposed guanine oxidation pathways in single-stranded, double-stranded or quadruplex DNA.
    Morikawa M; Kino K; Oyoshi T; Suzuki M; Kobayashi T; Miyazawa H
    Biomolecules; 2014 Feb; 4(1):140-59. PubMed ID: 24970209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Products of Oxidative Guanine Damage Form Base Pairs with Guanine.
    Kino K; Kawada T; Hirao-Suzuki M; Morikawa M; Miyazawa H
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excision by the human methylpurine DNA N-glycosylase of cyanuric acid, a stable and mutagenic oxidation product of 8-oxo-7,8-dihydroguanine.
    Dherin C; Gasparutto D; O'Connor TR; Cadet J; Boiteux S
    Int J Radiat Biol; 2004 Jan; 80(1):21-7. PubMed ID: 14761847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Role for N6-Methyladenine in DNA Damage Repair.
    Zhang X; Blumenthal RM; Cheng X
    Trends Biochem Sci; 2021 Mar; 46(3):175-183. PubMed ID: 33077363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair and mutagenic potential of oxaluric acid, a major product of singlet oxygen-mediated oxidation of 8-oxo-7,8-dihydroguanine.
    Duarte V; Gasparutto D; Jaquinod M; Ravanat J; Cadet J
    Chem Res Toxicol; 2001 Jan; 14(1):46-53. PubMed ID: 11170507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and error-free replication past a minor-groove N2-guanine adduct by the sequential action of yeast Rev1 and DNA polymerase zeta.
    Washington MT; Minko IG; Johnson RE; Haracska L; Harris TM; Lloyd RS; Prakash S; Prakash L
    Mol Cell Biol; 2004 Aug; 24(16):6900-6. PubMed ID: 15282292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.
    Boiteux S; Coste F; Castaing B
    Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of ring-opened and rearranged products of guanine: mechanisms and biological significance.
    Jena NR; Mishra PC
    Free Radic Biol Med; 2012 Jul; 53(1):81-94. PubMed ID: 22583701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine.
    Duarte V; Muller JG; Burrows CJ
    Nucleic Acids Res; 1999 Jan; 27(2):496-502. PubMed ID: 9862971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Shizosaccharomyces pombe homolog (SpMYH) of the Escherichia coli MutY is required for removal of guanine from 8-oxoguanine/guanine mispairs to prevent G:C to C:G transversions.
    Doi T; Yonekura S; Tano K; Yasuhira S; Yonei S; Zhang QM
    J Radiat Res; 2005 Jun; 46(2):205-14. PubMed ID: 15988139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UVR-induced G-C to C-G transversions from oxidative DNA damage.
    Kino K; Sugiyama H
    Mutat Res; 2005 Apr; 571(1-2):33-42. PubMed ID: 15748636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.