These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 28781753)

  • 1. A very simple, re-executable neuroimaging publication.
    Ghosh SS; Poline JB; Keator DB; Halchenko YO; Thomas AG; Kessler DA; Kennedy DN
    F1000Res; 2017; 6():124. PubMed ID: 28781753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Everything Matters: The ReproNim Perspective on Reproducible Neuroimaging.
    Kennedy DN; Abraham SA; Bates JF; Crowley A; Ghosh S; Gillespie T; Goncalves M; Grethe JS; Halchenko YO; Hanke M; Haselgrove C; Hodge SM; Jarecka D; Kaczmarzyk J; Keator DB; Meyer K; Martone ME; Padhy S; Poline JB; Preuss N; Sincomb T; Travers M
    Front Neuroinform; 2019; 13():1. PubMed ID: 30792636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System.
    Passerat-Palmbach J; Reuillon R; Leclaire M; Makropoulos A; Robinson EC; Parisot S; Rueckert D
    Front Neuroinform; 2017; 11():21. PubMed ID: 28381997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assessment of the autism neuroimaging literature for the prospects of re-executability.
    Hodge SM; Haselgrove C; Honor L; Kennedy DN; Frazier JA
    F1000Res; 2020; 9():1031. PubMed ID: 33796274
    [No Abstract]   [Full Text] [Related]  

  • 5. Sharing interoperable workflow provenance: A review of best practices and their practical application in CWLProv.
    Khan FZ; Soiland-Reyes S; Sinnott RO; Lonie A; Goble C; Crusoe MR
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31675414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CODECHECK: an Open Science initiative for the independent execution of computations underlying research articles during peer review to improve reproducibility.
    Nüst D; Eglen SJ
    F1000Res; 2021; 10():253. PubMed ID: 34367614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The design and implementation of a workflow analysis tool.
    Curcin V; Ghanem M; Guo Y
    Philos Trans A Math Phys Eng Sci; 2010 Sep; 368(1926):4193-208. PubMed ID: 20679131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System for Quality-Assured Data Analysis: Flexible, reproducible scientific workflows.
    Fowler J; San Lucas FA; Scheet P
    Genet Epidemiol; 2019 Mar; 43(2):227-237. PubMed ID: 30565316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating reproducibility and tracking provenance - A genomic workflow case study.
    Kanwal S; Khan FZ; Lonie A; Sinnott RO
    BMC Bioinformatics; 2017 Jul; 18(1):337. PubMed ID: 28701218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducible Bioconductor workflows using browser-based interactive notebooks and containers.
    Almugbel R; Hung LH; Hu J; Almutairy A; Ortogero N; Tamta Y; Yeung KY
    J Am Med Inform Assoc; 2018 Jan; 25(1):4-12. PubMed ID: 29092073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Framework to Capture the Arcana of Neuroimaging Analysis.
    Close TG; Ward PGD; Sforazzini F; Goscinski W; Chen Z; Egan GF
    Neuroinformatics; 2020 Jan; 18(1):109-129. PubMed ID: 31236848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducible manuscript preparation with RMarkdown application to JMSACL and other Elsevier Journals.
    Holmes DT; Mobini M; McCudden CR
    J Mass Spectrom Adv Clin Lab; 2021 Nov; 22():8-16. PubMed ID: 34939050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experiences with workflows for automating data-intensive bioinformatics.
    Spjuth O; Bongcam-Rudloff E; Hernández GC; Forer L; Giovacchini M; Guimera RV; Kallio A; Korpelainen E; Kańduła MM; Krachunov M; Kreil DP; Kulev O; Łabaj PP; Lampa S; Pireddu L; Schönherr S; Siretskiy A; Vassilev D
    Biol Direct; 2015 Aug; 10():43. PubMed ID: 26282399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors.
    Colombini D; Occhipinti E
    Scand J Work Environ Health; 2018 Jul; 44(4):436-438. PubMed ID: 29961081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rules to be adopted for publishing a scientific paper.
    Picardi N
    Ann Ital Chir; 2016; 87():1-3. PubMed ID: 28474609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ten simple rules on how to write a standard operating procedure.
    Hollmann S; Frohme M; Endrullat C; Kremer A; D'Elia D; Regierer B; Nechyporenko A;
    PLoS Comput Biol; 2020 Sep; 16(9):e1008095. PubMed ID: 32881868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pyKNEEr: An image analysis workflow for open and reproducible research on femoral knee cartilage.
    Bonaretti S; Gold GE; Beaupre GS
    PLoS One; 2020; 15(1):e0226501. PubMed ID: 31978052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducible bioinformatics project: a community for reproducible bioinformatics analysis pipelines.
    Kulkarni N; Alessandrì L; Panero R; Arigoni M; Olivero M; Ferrero G; Cordero F; Beccuti M; Calogero RA
    BMC Bioinformatics; 2018 Oct; 19(Suppl 10):349. PubMed ID: 30367595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interacting with the National Database for Autism Research (NDAR) via the LONI Pipeline workflow environment.
    Torgerson CM; Quinn C; Dinov I; Liu Z; Petrosyan P; Pelphrey K; Haselgrove C; Kennedy DN; Toga AW; Van Horn JD
    Brain Imaging Behav; 2015 Mar; 9(1):89-103. PubMed ID: 25666423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying impact of software dependencies on replicability of biomedical workflows.
    Miksa T; Rauber A; Mina E
    J Biomed Inform; 2016 Dec; 64():232-254. PubMed ID: 27789415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.