These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28782078)

  • 1. Leg-local neural mechanisms for searching and learning enhance robotic locomotion.
    Szczecinski NS; Quinn RD
    Biol Cybern; 2018 Apr; 112(1-2):99-112. PubMed ID: 28782078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mantisbot is a robotic model of visually guided motion in the praying mantis.
    Szczecinski NS; Getsy AP; Martin JP; Ritzmann RE; Quinn RD
    Arthropod Struct Dev; 2017 Sep; 46(5):736-751. PubMed ID: 28302586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template for the neural control of directed stepping generalized to all legs of MantisBot.
    Szczecinski NS; Quinn RD
    Bioinspir Biomim; 2017 Jun; 12(4):045001. PubMed ID: 28422047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A survey on CPG-inspired control models and system implementation.
    Yu J; Tan M; Chen J; Zhang J
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):441-56. PubMed ID: 24807442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neuro-mechanical model of legged locomotion: single leg control.
    Wadden T; Ekeberg O
    Biol Cybern; 1998 Aug; 79(2):161-73. PubMed ID: 9791936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of feedback on stability and maneuverability of a phase-reduced model for cockroach locomotion.
    Proctor JL; Holmes P
    Biol Cybern; 2018 Aug; 112(4):387-401. PubMed ID: 29948143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of hindlimb locomotor strength in spinal cord transected rats through animal-robot contact force.
    Nessler JA; Moustafa-Bayoumi M; Soto D; Duhon J; Schmitt R
    J Biomech Eng; 2011 Dec; 133(12):121007. PubMed ID: 22206424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design process and tools for dynamic neuromechanical models and robot controllers.
    Szczecinski NS; Hunt AJ; Quinn RD
    Biol Cybern; 2017 Feb; 111(1):105-127. PubMed ID: 28224266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stimulating the lumbar skin caudal to a complete spinal cord injury on hindlimb locomotion.
    Hurteau MF; Thibaudier Y; Dambreville C; Desaulniers C; Frigon A
    J Neurophysiol; 2015 Jan; 113(2):669-76. PubMed ID: 25339715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of sensory feedback on crayfish posture and locomotion: I. Experimental analysis of closing the loop.
    Chung B; Bacqué-Cazenave J; Cofer DW; Cattaert D; Edwards DH
    J Neurophysiol; 2015 Mar; 113(6):1763-71. PubMed ID: 25540217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decentralized control mechanism underlying interlimb coordination of millipedes.
    Kano T; Sakai K; Yasui K; Owaki D; Ishiguro A
    Bioinspir Biomim; 2017 Apr; 12(3):036007. PubMed ID: 28375850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of phase shifts of sensory inputs in walking revealed by means of phase reduction.
    Yeldesbay A; Tóth T; Daun S
    J Comput Neurosci; 2018 Jun; 44(3):313-339. PubMed ID: 29589252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-dependent sensorimotor gating in a rhythmic motor system.
    White RS; Spencer RM; Nusbaum MP; Blitz DM
    J Neurophysiol; 2017 Nov; 118(5):2806-2818. PubMed ID: 28814634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals.
    Minassian K; Hofstoetter US; Danner SM; Mayr W; Bruce JA; McKay WB; Tansey KE
    Neurorehabil Neural Repair; 2016 Mar; 30(3):233-43. PubMed ID: 26089308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory feedback in cockroach locomotion: current knowledge and open questions.
    Ayali A; Couzin-Fuchs E; David I; Gal O; Holmes P; Knebel D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Sep; 201(9):841-50. PubMed ID: 25432627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominance of local sensory signals over inter-segmental effects in a motor system: modeling studies.
    Daun-Gruhn S; Tóth TI; Borgmann A
    Biol Cybern; 2011 Dec; 105(5-6):413-26. PubMed ID: 22290139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.