These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
996 related articles for article (PubMed ID: 28782179)
1. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels. Ansari S; Sarrion P; Hasani-Sadrabadi MM; Aghaloo T; Wu BM; Moshaverinia A J Biomed Mater Res A; 2017 Nov; 105(11):2957-2967. PubMed ID: 28639378 [TBL] [Abstract][Full Text] [Related]
3. Assessment of hydrogels for bioprinting of endothelial cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674 [TBL] [Abstract][Full Text] [Related]
4. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
5. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
6. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering. Duarte Campos DF; Blaeser A; Buellesbach K; Sen KS; Xun W; Tillmann W; Fischer H Adv Healthc Mater; 2016 Jun; 5(11):1336-45. PubMed ID: 27072652 [TBL] [Abstract][Full Text] [Related]
7. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
8. A bioprintable form of chitosan hydrogel for bone tissue engineering. Demirtaş TT; Irmak G; Gümüşderelioğlu M Biofabrication; 2017 Jul; 9(3):035003. PubMed ID: 28639943 [TBL] [Abstract][Full Text] [Related]
9. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175 [TBL] [Abstract][Full Text] [Related]
10. Comparison of MSC properties in two different hydrogels. Impact of mechanical properties. Yu H; Cauchois G; Louvet N; Chen Y; Rahouadj R; Huselstein C Biomed Mater Eng; 2017; 28(s1):S193-S200. PubMed ID: 28372295 [TBL] [Abstract][Full Text] [Related]
11. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
12. [Effects of alginate/collagen scaffold on cell proliferation and differentiation of human adipose-derived mesenchymal stem cells]. Cheng W; Han XP; Mou SL; Yang F; Liu LP Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Apr; 52(4):259-264. PubMed ID: 28412794 [No Abstract] [Full Text] [Related]
13. In vitro evaluation of 3D bioprinted tri-polymer network scaffolds for bone tissue regeneration. Bendtsen ST; Wei M J Biomed Mater Res A; 2017 Dec; 105(12):3262-3272. PubMed ID: 28804996 [TBL] [Abstract][Full Text] [Related]
14. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Choe G; Oh S; Seok JM; Park SA; Lee JY Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460 [TBL] [Abstract][Full Text] [Related]
15. Cell specificity of magnetic cell seeding approach to hydrogel colonization. Singh R; Wieser A; Reakasame S; Detsch R; Dietel B; Alexiou C; Boccaccini AR; Cicha I J Biomed Mater Res A; 2017 Nov; 105(11):2948-2957. PubMed ID: 28639348 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. Poldervaart MT; Goversen B; de Ruijter M; Abbadessa A; Melchels FPW; Öner FC; Dhert WJA; Vermonden T; Alblas J PLoS One; 2017; 12(6):e0177628. PubMed ID: 28586346 [TBL] [Abstract][Full Text] [Related]
17. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Choi JW; Choi BH; Park SH; Pai KS; Li TZ; Min BH; Park SR Artif Organs; 2013 Jul; 37(7):648-55. PubMed ID: 23495957 [TBL] [Abstract][Full Text] [Related]
18. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels. Kang LH; Armstrong PA; Lee LJ; Duan B; Kang KH; Butcher JT Ann Biomed Eng; 2017 Feb; 45(2):360-377. PubMed ID: 27106636 [TBL] [Abstract][Full Text] [Related]
19. Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds. Martorell L; López-Fernández A; García-Lizarribar A; Sabata R; Gálvez-Martín P; Samitier J; Vives J Biotechnol Bioeng; 2023 Sep; 120(9):2717-2724. PubMed ID: 36919270 [TBL] [Abstract][Full Text] [Related]
20. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Zhou H; Xu HH Biomaterials; 2011 Oct; 32(30):7503-13. PubMed ID: 21757229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]