These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 28782282)
1. The effect of amino plasma-enhanced chemical vapor deposition-treated titanium surface on Schwann cells. Zhao J; Guo Y; Lan A; Luo W; Wang X; Fu L; Cai Q; Zhou Y J Biomed Mater Res A; 2018 Jan; 106(1):265-271. PubMed ID: 28782282 [TBL] [Abstract][Full Text] [Related]
2. Surface functionalization of TiO A L; Xu W; Zhao J; Li C; Qi M; Li X; Wang L; Zhou Y Biomed Eng Online; 2018 Jun; 17(1):88. PubMed ID: 29925387 [TBL] [Abstract][Full Text] [Related]
3. The osteogenesis performance of titanium modified via plasma-enhanced chemical vapor deposition: in vitro and in vivo studies. Yu W; Wang X; Guo Y; Yang S; Zhou Z; Sun X; Zhang R; Guo T; Zhou Y; Zhao J Biomed Mater; 2020 Aug; 15(5):055012. PubMed ID: 32857733 [TBL] [Abstract][Full Text] [Related]
4. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
5. Zinc ion implantation‑deposition technique improves the osteoblast biocompatibility of titanium surfaces. Liang Y; Xu J; Chen J; Qi M; Xie X; Hu M Mol Med Rep; 2015 Jun; 11(6):4225-31. PubMed ID: 25673139 [TBL] [Abstract][Full Text] [Related]
6. Titanium coated with functionalized carbon nanotubes--a promising novel material for biomedical application as an implantable orthopaedic electronic device. Przekora A; Benko A; Nocun M; Wyrwa J; Blazewicz M; Ginalska G Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():287-96. PubMed ID: 25491831 [TBL] [Abstract][Full Text] [Related]
7. Concentrated growth factor increases Schwann cell proliferation and neurotrophic factor secretion and promotes functional nerve recovery in vivo. Qin J; Wang L; Sun Y; Sun X; Wen C; Shahmoradi M; Zhou Y Int J Mol Med; 2016 Feb; 37(2):493-500. PubMed ID: 26709397 [TBL] [Abstract][Full Text] [Related]
8. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture. Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314 [TBL] [Abstract][Full Text] [Related]
9. Osteoblast-like cell attachment and proliferation on turned, blasted, and anodized titanium surfaces. Pae A; Kim SS; Kim HS; Woo YH Int J Oral Maxillofac Implants; 2011; 26(3):475-81. PubMed ID: 21691593 [TBL] [Abstract][Full Text] [Related]
10. Spark anodization of titanium-zirconium alloy: surface characterization and bioactivity assessment. Sharma A; McQuillan AJ; Sharma LA; Waddell JN; Shibata Y; Duncan WJ J Mater Sci Mater Med; 2015 Aug; 26(8):221. PubMed ID: 26260697 [TBL] [Abstract][Full Text] [Related]
11. Innovative surface modification of Ti-6Al-4V alloy with a positive effect on osteoblast proliferation and fatigue performance. Havlikova J; Strasky J; Vandrovcova M; Harcuba P; Mhaede M; Janecek M; Bacakova L Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():371-9. PubMed ID: 24863238 [TBL] [Abstract][Full Text] [Related]
12. The protective effects of resveratrol on Schwann cells with toxicity induced by ethanol in vitro. Yuan H; Zhang J; Liu H; Li Z Neurochem Int; 2013 Sep; 63(3):146-53. PubMed ID: 23770283 [TBL] [Abstract][Full Text] [Related]
13. A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography. Hacking SA; Zuraw M; Harvey EJ; Tanzer M; Krygier JJ; Bobyn JD J Biomed Mater Res A; 2007 Jul; 82(1):179-87. PubMed ID: 17269149 [TBL] [Abstract][Full Text] [Related]
14. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853 [TBL] [Abstract][Full Text] [Related]
15. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925 [TBL] [Abstract][Full Text] [Related]
16. Oxygen and Nitrogen Gas Plasma Surface Treatments on Titanium for Initial Adhesion and Proliferation of Preosteoblast Cells. Ko YM; Myung SW; Jung SC; Kim BH J Nanosci Nanotechnol; 2015 Jan; 15(1):196-9. PubMed ID: 26328329 [TBL] [Abstract][Full Text] [Related]
17. Effects of surface functional groups on proliferation and biofunction of Schwann cells. Wang Y; Ji Y; Zhao Y; Kong Y; Gao M; Feng Q; Wu Y; Yang Y J Biomater Appl; 2016 May; 30(10):1494-504. PubMed ID: 26911577 [TBL] [Abstract][Full Text] [Related]
18. Effect of implant surface microtopography on proliferation, neurotrophin secretion, and gene expression of Schwann cells. Yuan Q; Liao D; Yang X; Li X; Wei N; Tan Z; Gong P J Biomed Mater Res A; 2010 Apr; 93(1):381-8. PubMed ID: 19569220 [TBL] [Abstract][Full Text] [Related]
19. Increased osteoblast adhesion on nanograined Ti modified with KRSR. Balasundaram G; Webster TJ J Biomed Mater Res A; 2007 Mar; 80(3):602-11. PubMed ID: 17031820 [TBL] [Abstract][Full Text] [Related]
20. Biological functionality and mechanistic contribution of extracellular matrix-ornamented three dimensional Ti-6Al-4V mesh scaffolds. Kumar A; Nune KC; Misra RD J Biomed Mater Res A; 2016 Nov; 104(11):2751-63. PubMed ID: 27325185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]