BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28782358)

  • 1. Iron Redox Transformations in the Presence of Natural Organic Matter: Effect of Calcium.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2017 Sep; 51(18):10413-10422. PubMed ID: 28782358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of pH on Iron Redox Transformations in Simulated Freshwaters Containing Natural Organic Matter.
    Garg S; Jiang C; Waite TD
    Environ Sci Technol; 2018 Nov; 52(22):13184-13194. PubMed ID: 30362718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and kinetics of dark iron redox transformations in previously photolyzed acidic natural organic matter solutions.
    Garg S; Ito H; Rose AL; Waite TD
    Environ Sci Technol; 2013 Feb; 47(4):1861-9. PubMed ID: 23331166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron redox transformations in continuously photolyzed acidic solutions containing natural organic matter: kinetic and mechanistic insights.
    Garg S; Jiang C; Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Aug; 47(16):9190-7. PubMed ID: 23879362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of natural organic matter on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa.
    Fujii M; Dang TC; Bligh MW; Rose AL; Waite TD
    Environ Sci Technol; 2014; 48(1):365-74. PubMed ID: 24261844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Chloride and Suwannee River Fulvic Acid on Cu Speciation: Implications to Cu Redox Transformations in Simulated Natural Waters.
    Xing G; Garg S; Miller CJ; Pham AN; Waite TD
    Environ Sci Technol; 2020 Feb; 54(4):2334-2343. PubMed ID: 31999104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter.
    Bligh MW; Waite TD
    Environ Sci Technol; 2010 Sep; 44(17):6667-73. PubMed ID: 20690668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters.
    Garg S; Xing G; Waite TD
    Environ Sci Technol; 2020 Jun; 54(11):6771-6780. PubMed ID: 32379429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is Superoxide-Mediated Fe(III) Reduction Important in Sunlit Surface Waters?
    Xing G; Garg S; Waite TD
    Environ Sci Technol; 2019 Nov; 53(22):13179-13190. PubMed ID: 31638396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Natural Organic Matter on H2O2-Mediated Oxidation of Fe(II) in Coastal Seawaters.
    Miller CJ; Vincent Lee SM; Rose AL; Waite TD
    Environ Sci Technol; 2012 Oct; 46(20):11078-85. PubMed ID: 22985332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-Mediated Reactive Oxygen Species Generation and Iron Redox Transformations in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa.
    Wang K; Garg S; Waite TD
    Environ Sci Technol; 2017 Aug; 51(15):8384-8395. PubMed ID: 28650640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sunlight-Mediated Reductive Transformation of Thallium(III) in Acidic Natural Organic Matter Solutions: Mechanisms and Kinetic Modeling.
    Ma C; Huang R; Huangfu X; Ma J
    Environ Sci Technol; 2023 May; 57(19):7466-7477. PubMed ID: 37134314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-oxidation of arsenite in acidic waters containing Suwannee River fulvic acid: roles of
    Wang Y; Gong X; Dong X
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45144-45154. PubMed ID: 33864218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Transformations of Iron in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa under Conditions Typical of Natural Waters.
    Wang K; Garg S; Waite TD
    Environ Sci Technol; 2017 Mar; 51(6):3287-3297. PubMed ID: 28233985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of light and Suwanee River Fulvic Acid on O
    Rong H; Garg S; Waite TD
    Environ Sci Technol; 2019 Jun; 53(12):6688-6698. PubMed ID: 31090416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich fen.
    Kügler S; Cooper RE; Wegner CE; Mohr JF; Wichard T; Küsel K
    Sci Total Environ; 2019 Jan; 646():972-988. PubMed ID: 30235650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of fulvic acid to the photochemical formation of Fe(II) in acidic Suwannee River fulvic acid solutions.
    Arakaki T; Saito K; Okada K; Nakajima H; Hitomi Y
    Chemosphere; 2010 Feb; 78(8):1023-7. PubMed ID: 20056515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexation and Redox Buffering of Iron(II) by Dissolved Organic Matter.
    Daugherty EE; Gilbert B; Nico PS; Borch T
    Environ Sci Technol; 2017 Oct; 51(19):11096-11104. PubMed ID: 28853878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of Cu(II) reduction by natural organic matter.
    Pham AN; Rose AL; Waite TD
    J Phys Chem A; 2012 Jun; 116(25):6590-9. PubMed ID: 22574891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.