BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28782554)

  • 1. Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis.
    Killian CE; Wilt FH
    Exp Cell Res; 2017 Oct; 359(1):205-214. PubMed ID: 28782554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lectin uptake and incorporation into the calcitic spicule of sea urchin embryos.
    Mozingo NM
    Zygote; 2015 Jun; 23(3):467-73. PubMed ID: 24735584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletogenesis by transfated secondary mesenchyme cells is dependent on extracellular matrix-ectoderm interactions in Paracentrotus lividus sea urchin embryos.
    Kiyomoto M; Zito F; Costa C; Poma V; Sciarrino S; Matranga V
    Dev Growth Differ; 2007 Dec; 49(9):731-41. PubMed ID: 17983367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix and mineral in the sea urchin larval skeleton.
    Wilt FH
    J Struct Biol; 1999 Jun; 126(3):216-26. PubMed ID: 10475684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomineralization of the spicules of sea urchin embryos.
    Wilt FH
    Zoolog Sci; 2002 Mar; 19(3):253-61. PubMed ID: 12125922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium transport into the cells of the sea urchin larva in relation to spicule formation.
    Vidavsky N; Addadi S; Schertel A; Ben-Ezra D; Shpigel M; Addadi L; Weiner S
    Proc Natl Acad Sci U S A; 2016 Nov; 113(45):12637-12642. PubMed ID: 27791140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae.
    Yajima M
    Dev Biol; 2007 Jul; 307(2):272-81. PubMed ID: 17540361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial stages of calcium uptake and mineral deposition in sea urchin embryos.
    Vidavsky N; Addadi S; Mahamid J; Shimoni E; Ben-Ezra D; Shpigel M; Weiner S; Addadi L
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):39-44. PubMed ID: 24344263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of secretion during sea urchin embryonic skeleton formation.
    Wilt FH; Killian CE; Hamilton P; Croker L
    Exp Cell Res; 2008 May; 314(8):1744-52. PubMed ID: 18355808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains.
    Hodor PG; Illies MR; Broadley S; Ettensohn CA
    Dev Biol; 2000 Jun; 222(1):181-94. PubMed ID: 10885756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletogenesis in sea urchin interordinal hybrid embryos.
    Brandhorst BP; Davenport R
    Cell Tissue Res; 2001 Jul; 305(1):159-67. PubMed ID: 11512668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for isolating primary mesenchyme cells of the sea urchin embryo. Panning on wheat germ agglutinin-coated dishes.
    Ettensohn CA; McClay DR
    Exp Cell Res; 1987 Feb; 168(2):431-8. PubMed ID: 3803448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus.
    Illies MR; Peeler MT; Dechtiaruk AM; Ettensohn CA
    Dev Genes Evol; 2002 Oct; 212(9):419-31. PubMed ID: 12373587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae.
    Kahil K; Varsano N; Sorrentino A; Pereiro E; Rez P; Weiner S; Addadi L
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):30957-30965. PubMed ID: 33229583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton.
    Kitajima T; Urakami H
    Dev Growth Differ; 2000 Aug; 42(4):295-306. PubMed ID: 10969729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. microRNA-31 modulates skeletal patterning in the sea urchin embryo.
    Stepicheva NA; Song JL
    Development; 2015 Nov; 142(21):3769-80. PubMed ID: 26400092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Dev Biol; 2011 May; 353(1):81-93. PubMed ID: 21362416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Culture of and experiments with sea urchin embryo primary mesenchyme cells.
    Moreno B; DiCorato A; Park A; Mobilia K; Knapp R; Bleher R; Wilke C; Alvares K; Joester D
    Methods Cell Biol; 2019; 150():293-330. PubMed ID: 30777181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.