These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 28782611)
21. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering. Luo Z; Yang Y; Deng Y; Sun Y; Yang H; Wei S Colloids Surf B Biointerfaces; 2016 Jul; 143():243-251. PubMed ID: 27022863 [TBL] [Abstract][Full Text] [Related]
22. In vitro response of osteoblast-like and odontoblast-like cells to unsubstituted and substituted apatites. Inoue M; LeGeros RZ; Inoue M; Tsujigiwa H; Nagatsuka H; Yamamoto T; Nagai N J Biomed Mater Res A; 2004 Sep; 70(4):585-93. PubMed ID: 15307163 [TBL] [Abstract][Full Text] [Related]
23. Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities. Kim Y; Kim G Colloids Surf B Biointerfaces; 2015 Jan; 125():181-9. PubMed ID: 25486326 [TBL] [Abstract][Full Text] [Related]
24. Bionanocomposite films based on polysaccharides from banana peels. Oliveira TÍS; Rosa MF; Ridout MJ; Cross K; Brito ES; Silva LMA; Mazzetto SE; Waldron KW; Azeredo HMC Int J Biol Macromol; 2017 Aug; 101():1-8. PubMed ID: 28315762 [TBL] [Abstract][Full Text] [Related]
25. Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering. Chen L; Hu J; Ran J; Shen X; Tong H Int J Biol Macromol; 2014 Apr; 65():1-7. PubMed ID: 24412151 [TBL] [Abstract][Full Text] [Related]
26. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. Bhowmick A; Pramanik N; Jana P; Mitra T; Gnanamani A; Das M; Kundu PP Int J Biol Macromol; 2017 Feb; 95():348-356. PubMed ID: 27865958 [TBL] [Abstract][Full Text] [Related]
27. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering. Tian L; Prabhakaran MP; Ding X; Ramakrishna S J Biomater Sci Polym Ed; 2013; 24(17):1952-68. PubMed ID: 23819766 [TBL] [Abstract][Full Text] [Related]
28. Bioinspired Collagen-Apatite Nanocomposites for Bone Regeneration. Liu S; Sun Y; Fu Y; Chang D; Fu C; Wang G; Liu Y; Tay FR; Zhou Y J Endod; 2016 Aug; 42(8):1226-32. PubMed ID: 27377439 [TBL] [Abstract][Full Text] [Related]
29. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Hickey DJ; Ercan B; Sun L; Webster TJ Acta Biomater; 2015 Mar; 14():175-84. PubMed ID: 25523875 [TBL] [Abstract][Full Text] [Related]
30. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering. Deng M; Nair LS; Nukavarapu SP; Kumbar SG; Brown JL; Krogman NR; Weikel AL; Allcock HR; Laurencin CT J Biomed Mater Res A; 2010 Jan; 92(1):114-25. PubMed ID: 19165780 [TBL] [Abstract][Full Text] [Related]
31. Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration. Jegal SH; Park JH; Kim JH; Kim TH; Shin US; Kim TI; Kim HW Acta Biomater; 2011 Apr; 7(4):1609-17. PubMed ID: 21145435 [TBL] [Abstract][Full Text] [Related]
32. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers. Kim IA; Rhee SH J Biomed Mater Res A; 2017 Jul; 105(7):1973-1983. PubMed ID: 28324641 [TBL] [Abstract][Full Text] [Related]
33. Polylactide-based bionanocomposites: a promising class of hybrid materials. Sinha Ray S Acc Chem Res; 2012 Oct; 45(10):1710-20. PubMed ID: 22953971 [TBL] [Abstract][Full Text] [Related]
34. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects. Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612 [TBL] [Abstract][Full Text] [Related]
35. Preparation and characterization of microspheres comprised of collagen, chondroitin sulfate, and apatite as carriers for the osteoblast-like cell MG63. Tsai SW; Chen CC; Liou HM; Hsu FY J Biomed Mater Res A; 2010 Apr; 93(1):115-22. PubMed ID: 19536833 [TBL] [Abstract][Full Text] [Related]
36. Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Ngiam M; Liao S; Patil AJ; Cheng Z; Yang F; Gubler MJ; Ramakrishna S; Chan CK Tissue Eng Part A; 2009 Mar; 15(3):535-46. PubMed ID: 18759670 [TBL] [Abstract][Full Text] [Related]
37. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering. Shakir M; Jolly R; Khan MS; Rauf A; Kazmi S Int J Biol Macromol; 2016 Dec; 93(Pt A):276-289. PubMed ID: 27543347 [TBL] [Abstract][Full Text] [Related]
38. Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Bhowmick A; Jana P; Pramanik N; Mitra T; Banerjee SL; Gnanamani A; Das M; Kundu PP Carbohydr Polym; 2016 Oct; 151():879-888. PubMed ID: 27474636 [TBL] [Abstract][Full Text] [Related]
39. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. Douglas TE; Wlodarczyk M; Pamula E; Declercq HA; de Mulder EL; Bucko MM; Balcaen L; Vanhaecke F; Cornelissen R; Dubruel P; Jansen JA; Leeuwenburgh SC J Tissue Eng Regen Med; 2014 Nov; 8(11):906-18. PubMed ID: 23038649 [TBL] [Abstract][Full Text] [Related]
40. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]