These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28782611)

  • 41. Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus L.) seeds starch.
    Madruga MS; de Albuquerque FS; Silva IR; do Amaral DS; Magnani M; Queiroga Neto V
    Food Chem; 2014 Jan; 143():440-5. PubMed ID: 24054264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
    Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW
    Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies.
    Shakir M; Jolly R; Khan MS; Iram Ne; Khan HM
    Int J Biol Macromol; 2015 Sep; 80():282-92. PubMed ID: 26116779
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advances in biomedical applications of pectin gels.
    Munarin F; Tanzi MC; Petrini P
    Int J Biol Macromol; 2012 Nov; 51(4):681-9. PubMed ID: 22776748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microspheres of collagen-apatite nanocomposites with osteogenic potential for tissue engineering.
    Kim HW; Gu HJ; Lee HH
    Tissue Eng; 2007 May; 13(5):965-73. PubMed ID: 17425498
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering.
    Xing ZC; Han SJ; Shin YS; Koo TH; Moon S; Jeong Y; Kang IK
    J Biomater Sci Polym Ed; 2013; 24(1):61-76. PubMed ID: 22289639
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and characterization of cellulose nanocrystals from jackfruit peel.
    Trilokesh C; Uppuluri KB
    Sci Rep; 2019 Nov; 9(1):16709. PubMed ID: 31723189
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication and evaluation of osteoblastic differentiation of human mesenchymal stem cells on novel CaO-SiO2-P2O5-B2O3 glass-ceramics.
    Lee JH; Seo JH; Lee KM; Ryu HS; Baek HR
    Artif Organs; 2013 Jul; 37(7):637-47. PubMed ID: 23560457
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bio-therapeutic Potential and Cytotoxicity Assessment of Pectin-Mediated Synthesized Nanostructured Cerium Oxide.
    Patil SN; Paradeshi JS; Chaudhari PB; Mishra SJ; Chaudhari BL
    Appl Biochem Biotechnol; 2016 Oct; 180(4):638-654. PubMed ID: 27234032
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pectin/poly(lactide-co-glycolide) composite matrices for biomedical applications.
    Liu L; Won YJ; Cooke PH; Coffin DR; Fishman ML; Hicks KB; Ma PX
    Biomaterials; 2004 Jul; 25(16):3201-10. PubMed ID: 14980415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and synthesis of biomimetic multicomponent all-bone-minerals bionanocomposites.
    Biswas A; Bayer IS; Zhao H; Wang T; Watanabe F; Biris AS
    Biomacromolecules; 2010 Oct; 11(10):2545-9. PubMed ID: 20863130
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process.
    Tuzlakoglu K; Reis RL
    J Mater Sci Mater Med; 2007 Jul; 18(7):1279-86. PubMed ID: 17431748
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering.
    Bhowmick A; Banerjee SL; Pramanik N; Jana P; Mitra T; Gnanamani A; Das M; Kundu PP
    Int J Biol Macromol; 2018 Jan; 106():11-19. PubMed ID: 28774805
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion.
    Feng B; Weng J; Yang BC; Qu SX; Zhang XD
    Biomaterials; 2004 Aug; 25(17):3421-8. PubMed ID: 15020115
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering.
    Luo Z; Deng Y; Zhang R; Wang M; Bai Y; Zhao Q; Lyu Y; Wei J; Wei S
    Colloids Surf B Biointerfaces; 2015 Jul; 131():73-82. PubMed ID: 25969416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin.
    Kodama T; Goto T; Miyazaki T; Takahashi T
    Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrospun nanostructured scaffolds for bone tissue engineering.
    Prabhakaran MP; Venugopal J; Ramakrishna S
    Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of innovative biopolymers and related composites for bone tissue regeneration: study of their interaction with human osteoprogenitor cells.
    Basile MA; d'Ayala GG; Laurienzo P; Malinconico M; Della Ragione F; Oliva A
    J Appl Biomater Funct Mater; 2012; 10(3):210-4. PubMed ID: 23258558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.