These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28782683)

  • 1. Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking.
    Artoni F; Fanciullacci C; Bertolucci F; Panarese A; Makeig S; Micera S; Chisari C
    Neuroimage; 2017 Oct; 159():403-416. PubMed ID: 28782683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The motor cortex drives the muscles during walking in human subjects.
    Petersen TH; Willerslev-Olsen M; Conway BA; Nielsen JB
    J Physiol; 2012 May; 590(10):2443-52. PubMed ID: 22393252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective corticomuscular connectivity during walking in patients with Parkinson's disease.
    Yokoyama H; Yoshida T; Zabjek K; Chen R; Masani K
    J Neurophysiol; 2020 Nov; 124(5):1399-1414. PubMed ID: 32938303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Physiol; 2006 Jun; 573(Pt 3):843-55. PubMed ID: 16581867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Corticomuscular and Intermuscular Coherence to Assess Cortical Contribution to Ankle Plantar Flexor Activity During Gait.
    Jensen P; Frisk R; Spedden ME; Geertsen SS; Bouyer LJ; Halliday DM; Nielsen JB
    J Mot Behav; 2019; 51(6):668-680. PubMed ID: 30657030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Group-level cortical and muscular connectivity during perturbations to walking and standing balance.
    Peterson SM; Ferris DP
    Neuroimage; 2019 Sep; 198():93-103. PubMed ID: 31112786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical muscle control of spontaneous movements in human neonates.
    Kanazawa H; Kawai M; Kinai T; Iwanaga K; Mima T; Heike T
    Eur J Neurosci; 2014 Aug; 40(3):2548-53. PubMed ID: 24827432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG synchrony to assess impaired corticomotor control of locomotion after stroke.
    Lodha N; Chen YT; McGuirk TE; Fox EJ; Kautz SA; Christou EA; Clark DJ
    J Electromyogr Kinesiol; 2017 Dec; 37():35-40. PubMed ID: 28888972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation.
    Dal Maso F; Desormeau B; Boudrias MH; Roig M
    Neuroimage; 2018 Jul; 174():380-392. PubMed ID: 29555428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticospinal input in human gait: modulation of magnetically evoked motor responses.
    Schubert M; Curt A; Jensen L; Dietz V
    Exp Brain Res; 1997 Jun; 115(2):234-46. PubMed ID: 9224852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.
    DiGiovanna J; Dominici N; Friedli L; Rigosa J; Duis S; Kreider J; Beauparlant J; van den Brand R; Schieppati M; Micera S; Courtine G
    J Neurosci; 2016 Oct; 36(40):10440-10455. PubMed ID: 27707977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A test of a dual central pattern generator hypothesis for subcortical control of locomotion.
    Guadagnoli MA; Etnyre B; Rodrigue ML
    J Electromyogr Kinesiol; 2000 Aug; 10(4):241-7. PubMed ID: 10969197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticomuscular coherence variation throughout the gait cycle during overground walking and ramp ascent: A preliminary investigation.
    Winslow AT; Brantley J; Zhu F; Contreras Vidal JL; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4634-4637. PubMed ID: 28269308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural decoding of treadmill walking from noninvasive electroencephalographic signals.
    Presacco A; Goodman R; Forrester L; Contreras-Vidal JL
    J Neurophysiol; 2011 Oct; 106(4):1875-87. PubMed ID: 21768121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG.
    Astolfi L; Cincotti F; Mattia D; Salinari S; Babiloni C; Basilisco A; Rossini PM; Ding L; Ni Y; He B; Marciani MG; Babiloni F
    Magn Reson Imaging; 2004 Dec; 22(10):1457-70. PubMed ID: 15707795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor patterns and kinematics during backward walking in the pacific giant salamander: evidence for novel motor output.
    Ashley-Ross MA; Lauder GV
    J Neurophysiol; 1997 Dec; 78(6):3047-60. PubMed ID: 9405524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and performance of obstacle steps: interaction between brain and spinal neuronal activity.
    Haefeli J; Vögeli S; Michel J; Dietz V
    Eur J Neurosci; 2011 Jan; 33(2):338-48. PubMed ID: 21070395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.