BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28783083)

  • 1. Fluorescent Polystyrene Films for the Detection of Volatile Organic Compounds Using the Twisted Intramolecular Charge Transfer Mechanism.
    Borelli M; Iasilli G; Minei P; Pucci A
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28783083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapochromic features of new luminogens based on julolidine-containing styrene copolymers.
    Iasilli G; Martini F; Minei P; Ruggeri G; Pucci A
    Faraday Discuss; 2017 Feb; 196():113-129. PubMed ID: 27896356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vapochromic Behaviour of Polycarbonate Films Doped with a Luminescent Molecular Rotor.
    Minei P; Ahmad M; Barone V; Brancato G; Passaglia E; Bottari G; Pucci A
    Polym Adv Technol; 2016 Apr; 27(4):429-435. PubMed ID: 28904520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes.
    Haidekker MA; Brady TP; Lichlyter D; Theodorakis EA
    Bioorg Chem; 2005 Dec; 33(6):415-25. PubMed ID: 16182338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular rotors--fluorescent biosensors for viscosity and flow.
    Haidekker MA; Theodorakis EA
    Org Biomol Chem; 2007 Jun; 5(11):1669-78. PubMed ID: 17520133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of trace volatile organic compounds in spiked breath samples: a leap towards breathomics.
    Ray B; Parmar S; Vijayan V; Vishwakarma S; Datar S
    Nanotechnology; 2022 Feb; 33(20):. PubMed ID: 35042201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging Coupled Solvatofluorochromism and Fluorescence Quenching in Nitrophenyl-Containing Thiazolothiazoles for Efficient Organic Vapor Sensing.
    Brotherton AR; Shibu A; Meadows JC; Sayresmith NA; Brown CE; Ledezma AM; Schmedake TA; Walter MG
    Adv Sci (Weinh); 2023 Jun; 10(18):e2205729. PubMed ID: 37186373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective sensing of volatile organic compounds using novel conducting polymer-metal nanoparticle hybrids.
    Vaddiraju S; Gleason KK
    Nanotechnology; 2010 Mar; 21(12):125503. PubMed ID: 20203352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile organic compounds sensing properties of tetrakis(alkylthio)-substituted lutetium(III) bisphthalocyanines thin films.
    Kilinç N; Atilla D; Gürek AG; Oztürk ZZ; Ahsen V
    Talanta; 2009 Nov; 80(1):263-8. PubMed ID: 19782225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and Reversible Vapoluminescent Organometallic Copper Polymers.
    Peng H; Xin Y; Shen W; Deng Z; Zhang J
    Macromol Rapid Commun; 2018 Jun; 39(11):e1800165. PubMed ID: 29744937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity.
    Tao J; Wang X; Sun T; Cai H; Wang Y; Lin T; Fu D; Ting LL; Gu Y; Zhao D
    Sci Rep; 2017 Jan; 7():41640. PubMed ID: 28139714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds.
    Steffens C; Leite FL; Manzoli A; Sandovall RD; Fatibello O; Herrmann PS
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6718-22. PubMed ID: 25924322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of flow patterns with fluorescent molecular rotors.
    Mustafic A; Huang HM; Theodorakis EA; Haidekker MA
    J Fluoresc; 2010 Sep; 20(5):1087-98. PubMed ID: 20405175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber-optic multi-sensor array for detection of low concentration volatile organic compounds.
    Khan MR; Kang BH; Lee SW; Kim SH; Yeom SH; Lee SH; Kang SW
    Opt Express; 2013 Aug; 21(17):20119-30. PubMed ID: 24105558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin films of block copolymer blends for enhanced performance of acoustic wave-based chemical sensors.
    Lipert RJ; Shinar R; Vaidya B; Pris AD; Porter MD; Liu G; Grabau TD; Dilger JP
    Anal Chem; 2002 Dec; 74(24):6383-91. PubMed ID: 12510763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential applications of luminescent molecular rotors in food science and engineering.
    Alhassawi FM; Corradini MG; Rogers MA; Ludescher RD
    Crit Rev Food Sci Nutr; 2018 Jul; 58(11):1902-1916. PubMed ID: 28662357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarity responsive polysiloxanes with twisting intramolecular charge transfer effect for monitoring lipophagy process and the detection of volatile organic compounds.
    Zuo Y; Zhang K; Gou Z; Yan M
    J Hazard Mater; 2024 Mar; 465():133106. PubMed ID: 38056256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-organized honeycomb-patterned microporous polystyrene thin films fabricated by calix[4]arene derivatives.
    Nomura E; Hosoda A; Takagaki M; Mori H; Miyake Y; Shibakami M; Taniguchi H
    Langmuir; 2010 Jun; 26(12):10266-70. PubMed ID: 20334411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity.
    Stsiapura VI; Maskevich AA; Kuzmitsky VA; Uversky VN; Kuznetsova IM; Turoverov KK
    J Phys Chem B; 2008 Dec; 112(49):15893-902. PubMed ID: 19367903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orderly ultrathin films based on perylene/poly(N-vinyl carbazole) assembled with layered double hydroxide nanosheets: 2D fluorescence resonance energy transfer and reversible fluorescence response for volatile organic compounds.
    Li Z; Lu J; Li S; Qin S; Qin Y
    Adv Mater; 2012 Nov; 24(45):6053-7. PubMed ID: 22936625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.