BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28783128)

  • 1. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.
    Yoon H; Kim YJ; Kim HS; Kang JW; Koh HM
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Validation of Slip-Forming Using Ultrasonic Sensors.
    Yoon H; Kim YJ; Chin WJ; Kang JW; Koh HM
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis and Strength Estimation of Fresh Concrete Based on Ultrasonic Wave Propagation and Maturity Using Smart Temperature and PZT Sensors.
    Tareen N; Kim J; Kim WK; Park S
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31450825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in Compressive Strength of Concrete aross Thickness of Placed Layer.
    Michałek J
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31284430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes.
    Gebauer D; Beltrán Gutiérrez RE; Marx S; Butler M; Grahl K; Thiel T; Maack S; Küttenbaum S; Pirskawetz S; Breit W; Schickert M; Krüger M
    Data Brief; 2023 Jun; 48():109201. PubMed ID: 37213551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Saturation Levels on the Ultrasonic Pulse Velocities and Mechanical Properties of Concrete.
    Candelaria MDE; Kee SH; Yee JJ; Lee JW
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Steel Plates on Estimation of the Compressive Strength of Concrete via Ultrasonic Testing.
    Rhim HC; Kim DY; Cho CS; Kim DH
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships among compressive strength and UPV of concrete reinforced with different types of fibers.
    Hedjazi S; Castillo D
    Heliyon; 2020 Mar; 6(3):e03646. PubMed ID: 32258488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.
    Trtnik G; Kavcic F; Turk G
    Ultrasonics; 2009 Jan; 49(1):53-60. PubMed ID: 18589471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.
    Bogas JA; Gomes MG; Gomes A
    Ultrasonics; 2013 Jul; 53(5):962-72. PubMed ID: 23351273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of Selected Non-Destructive Methods for Determining the Compressive Strength of Masonry Units Made of Autoclaved Aerated Concrete.
    Jasiński R; Drobiec Ł; Mazur W
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30691179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Influence of Ambient Temperature on High Performance Concrete Properties.
    Kaleta-Jurowska A; Jurowski K
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques.
    Nagwani NK; Deo SV
    ScientificWorldJournal; 2014; 2014():381549. PubMed ID: 25374939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods.
    Candelaria MDE; Kee SH; Lee KS
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical Reliability Analysis of Ultrasonic Velocity Method for Predicting Residual Strength of High-Strength Concrete under High-Temperature Conditions.
    Kim W; Jeong K; Lee T
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Compressive Strength of Concrete Containing Untreated Coal Waste Aggregates Using Ultrasonic Pulse Velocity.
    Karimaei M; Dabbaghi F; Dehestani M; Rashidi M
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Study to Improve the Reliability of High-Strength Concrete Strength Evaluation Using an Ultrasonic Velocity Method.
    Kim W; Lee T
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation on Early Strength Development of Concrete Mixed with Non-Sintered Hwangto Using Ultrasonic Pulse Velocity.
    Nam Y; Jeong K; Kim W; Choi H; Lee T
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristic Curve and Its Use in Determining the Compressive Strength of Concrete by the Rebound Hammer Test.
    Kocáb D; Misák P; Cikrle P
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concrete Compressive Strength by Means of Ultrasonic Pulse Velocity and Moduli of Elasticity.
    Bolborea B; Baera C; Dan S; Gruin A; Burduhos-Nergis DD; Vasile V
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.