BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28783128)

  • 21. Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT-CNT Sensor.
    Tareen N; Kim J; Kim WK; Park S
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating Ultrasonic Pulse Velocity Method for Evaluating High-Temperature Properties of Non-Sintered Hwangto-Mixed Concrete as a Cement Replacement Material.
    Kim W; Choi H; Lee T
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influences of Chemical Composition and Fineness on the Development of Concrete Strength by Curing Conditions.
    Lee J; Lee T
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete.
    Ham S; Song H; Oelze ML; Popovics JS
    Ultrasonics; 2017 Mar; 75():46-57. PubMed ID: 27914306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Residual Compressive Strength Prediction Model for Concrete Subject to High Temperatures Using Ultrasonic Pulse Velocity.
    Kim W; Choi H; Lee T
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Study on the Thermal Properties of High-Strength Concrete Containing CBA Fine Aggregates.
    Yang IH; Park J
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32218267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasonic testing of reactive powder concrete.
    Washer G; Fuchs P; Graybeal BA; Hartmann JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):193-201. PubMed ID: 15055809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NDT response of spectral analysis of surface wave method to multi-layer thin high-strength concrete structures.
    Cho YS
    Ultrasonics; 2002 May; 40(1-8):227-30. PubMed ID: 12159937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.
    Kim J; Lee C; Park S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deterioration and Oxidation Characteristics of Black Shale under Immersion and Its Impact on the Strength of Concrete.
    Liao X; Zhang W; Chen J; Wang Q; Wu X; Ling S; Guo D
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32486460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Damage Detection of Asphalt Concrete Using Piezo-Ultrasonic Wave Technology.
    Pan WH; Sun XD; Wu LM; Yang KK; Tang N
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30709018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictive Modeling of Compressive Strength for Concrete at Super Early Age.
    Peng X; Zhuang Z; Yang Q
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation Analysis of Ultrasonic Pulse Velocity and Mechanical Properties of Normal Aggregate and Lightweight Aggregate Concretes in 30-60 MPa Range.
    Kim W; Jeong K; Choi H; Lee T
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strength deterioration prediction of pervious concrete in sulfate and dry-wet cycle environments utilizing ultrasonic velocity.
    Song H; Fan S; Zhang S; Gong M
    PLoS One; 2023; 18(6):e0286948. PubMed ID: 37310986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of Static Modulus and Compressive Strength of Concrete from Dynamic Modulus Associated with Wave Velocity and Resonance Frequency Using Machine Learning Techniques.
    Park JY; Sim SH; Yoon YG; Oh TK
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32605042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tests of Concrete Strength across the Thickness of Industrial Floor Using the Ultrasonic Method with Exponential Spot Heads.
    Stawiski B; Kania T
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concrete Compressive Strength under Changing Environmental Conditions during Placement Processes.
    Ambroziak A; Ziolkowski P
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical Performance of High-Strength Sustainable Concrete under Fire Incorporating Locally Available Volcanic Ash in Central Harrat Rahat, Saudi Arabia.
    Amin MN; Khan K
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete.
    Long WJ; Khayat KH; Lemieux G; Hwang SD; Xing F
    Materials (Basel); 2014 Oct; 7(10):6930-6946. PubMed ID: 28788223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of Foundry Sand Concrete under Ambient and Elevated Temperatures.
    Bilal H; Yaqub M; Rehman SKU; Abid M; Alyousef R; Alabduljabbar H; Aslam F
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31434240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.