These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28783128)

  • 41. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings.
    Hobbs B; Tchoketch Kebir M
    Forensic Sci Int; 2007 Apr; 167(2-3):167-72. PubMed ID: 16904854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strength Prediction of Non-Sintered Hwangto-Substituted Concrete Using the Ultrasonic Velocity Method.
    Im H; Kim W; Choi H; Lee T
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204026
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines.
    Shih YF; Wang YR; Lin KL; Chen CW
    Materials (Basel); 2015 Oct; 8(10):7169-7178. PubMed ID: 28793627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Size effects on the mechanical behavior and the compressive failure strength of concrete: an extensive dataset.
    Vu CC; Weiss J; Plé O; Amitrano D
    Data Brief; 2020 Dec; 33():106477. PubMed ID: 33241093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temperature Effect on the Compressive Behavior and Constitutive Model of Plain Hardened Concrete.
    El-Zohairy A; Hammontree H; Oh E; Moler P
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32580270
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Examining the Distribution of Strength across the Thickness of Reinforced Concrete Elements Subject to Sulphate Corrosion Using the Ultrasonic Method.
    Stawiski B; Kania T
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394890
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network.
    Du G; Bu L; Hou Q; Zhou J; Lu B
    PLoS One; 2021; 16(5):e0250795. PubMed ID: 33939736
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Early-Age Strength of Ultra-High Performance Concrete in Various Curing Conditions.
    Park JS; Kim YJ; Cho JR; Jeon SJ
    Materials (Basel); 2015 Aug; 8(8):5537-5553. PubMed ID: 28793522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performance Degradation and Microscopic Analysis of Lightweight Aggregate Concrete after Exposure to High Temperature.
    Yao W; Pang J; Liu Y
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32231140
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of Concrete Compressive Strength in Saline Soil Environments.
    Yang D; Yan C; Liu S; Jia Z; Wang C
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrasonic Monitoring of Setting and Strength Development of Ultra-High-Performance Concrete.
    Yoo DY; Shin HO; Yoon YS
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of Delamination in Concrete by IE Testing Using Multi-Channel Elastic Wave Data.
    Kee SH; Lee JW; Candelaria MD
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905886
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental Study of Thermally Damaged Concrete under a Hygrothermal Environment by Using a Combined Infrared Thermal Imaging and Ultrasonic Pulse Velocity Method.
    Wang Y; Cui J; Deng J; Zhou H
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of Reinforcement Bars on Concrete Pore Structure and Compressive Strength.
    Hua J; Zhou F; Huang L; Chen Z; Xu Y; Xie Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32024190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of maximum aggregate size on UPV of brick aggregate concrete.
    Mohammed TU; Mahmood AH
    Ultrasonics; 2016 Jul; 69():129-36. PubMed ID: 27085110
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantification of Ceramsite Granules in Lightweight Concrete Panels through an Image Analysis Technique.
    Bu C; Yang H; Liu L; Zhu D; Sun Y; Yu L; Ouyang Y; Cao X; Wei Q
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161011
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reuse of waste iron as a partial replacement of sand in concrete.
    Ismail ZZ; Al-Hashmi EA
    Waste Manag; 2008 Nov; 28(11):2048-53. PubMed ID: 17928216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The evaluation of distributed damage in concrete based on sinusoidal modeling of the ultrasonic response.
    Sepehrinezhad A; Toufigh V
    Ultrasonics; 2018 Sep; 89():195-205. PubMed ID: 29883869
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Corrosion Performance of Nano-TiO
    Xu C; Liao HH; Chen YL; Du X; Peng B; Fernandez-Steeger TM
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EXPRESS: Quasi-Non-Destructive Estimation of Concrete Compression Strength Using Laser-Induced Breakdown Spectroscopy and Multivariate Analysis.
    Eto S; Otsuka T
    Appl Spectrosc; 2024 Jun; ():37028241262040. PubMed ID: 38881211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.