BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28783260)

  • 1. Plasma Proteome Association and Catalytic Activity of Stealth Polymer-Grafted Iron Oxide Nanoparticles.
    Wang M; Siddiqui G; Gustafsson OJR; Käkinen A; Javed I; Voelcker NH; Creek DJ; Ke PC; Davis TP
    Small; 2017 Sep; 13(36):. PubMed ID: 28783260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood brain barrier model.
    Ivask A; Pilkington EH; Blin T; Käkinen A; Vija H; Visnapuu M; Quinn JF; Whittaker MR; Qiao R; Davis TP; Ke PC; Voelcker NH
    Biomater Sci; 2018 Jan; 6(2):314-323. PubMed ID: 29239410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma protein adsorption on Fe
    Escamilla-Rivera V; Solorio-Rodríguez A; Uribe-Ramírez M; Lozano O; Lucas S; Chagolla-López A; Winkler R; De Vizcaya-Ruiz A
    Int J Nanomedicine; 2019; 14():2055-2067. PubMed ID: 30988608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry.
    Gal N; Schroffenegger M; Reimhult E
    J Phys Chem B; 2018 Jun; 122(22):5820-5834. PubMed ID: 29726682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconjugation and Fluorescence Labeling of Iron Oxide Nanoparticles Grafted with Bromomaleimide-Terminal Polymers.
    Qiao R; Esser L; Fu C; Zhang C; Hu J; Ramírez-Arcía P; Li Y; Quinn JF; Whittaker MR; Whittaker AK; Davis TP
    Biomacromolecules; 2018 Nov; 19(11):4423-4429. PubMed ID: 30350948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation.
    Wang M; Kakinen A; Pilkington EH; Davis TP; Ke PC
    Biomater Sci; 2017 Feb; 5(3):485-493. PubMed ID: 28078343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brushed polyethylene glycol and phosphorylcholine for grafting nanoparticles against protein binding.
    Wang B; Blin T; Käkinen A; Ge X; Pilkington EH; Quinn JF; Whittaker MR; Davis TP; Ke PC; Ding F
    Polym Chem; 2016 Dec; 7(45):6875-6879. PubMed ID: 28348639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline).
    Wang M; Gustafsson OJR; Siddiqui G; Javed I; Kelly HG; Blin T; Yin H; Kent SJ; Creek DJ; Kempe K; Ke PC; Davis TP
    Nanoscale; 2018 Jun; 10(23):10863-10875. PubMed ID: 29658020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona.
    Sakulkhu U; Mahmoudi M; Maurizi L; Coullerez G; Hofmann-Amtenbrink M; Vries M; Motazacker M; Rezaee F; Hofmann H
    Biomater Sci; 2015 Feb; 3(2):265-78. PubMed ID: 26218117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice.
    Xue W; Liu Y; Zhang N; Yao Y; Ma P; Wen H; Huang S; Luo Y; Fan H
    Int J Nanomedicine; 2018; 13():5719-5731. PubMed ID: 30310275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media.
    Pavón C; Benetti EM; Lorandi F
    Langmuir; 2024 Jun; 40(23):11843-11857. PubMed ID: 38787578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preventing corona effects: multiphosphonic acid poly(ethylene glycol) copolymers for stable stealth iron oxide nanoparticles.
    Torrisi V; Graillot A; Vitorazi L; Crouzet Q; Marletta G; Loubat C; Berret JF
    Biomacromolecules; 2014 Aug; 15(8):3171-9. PubMed ID: 25046557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles.
    Rabanel JM; Faivre J; Tehrani SF; Lalloz A; Hildgen P; Banquy X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10374-85. PubMed ID: 25909493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications.
    Hou Z; Liu Y; Xu J; Zhu J
    Nanoscale; 2020 Jul; 12(28):14957-14975. PubMed ID: 32648868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools.
    Askri D; Cunin V; Béal D; Berthier S; Chovelon B; Arnaud J; Rachidi W; Sakly M; Amara S; Sève M; Lehmann SG
    Nanotoxicology; 2019 Oct; 13(8):1021-1040. PubMed ID: 31132913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Link between Low-Fouling and Stealth: A Whole Blood Biomolecular Corona and Cellular Association Analysis on Nanoengineered Particles.
    Weiss ACG; Kelly HG; Faria M; Besford QA; Wheatley AK; Ang CS; Crampin EJ; Caruso F; Kent SJ
    ACS Nano; 2019 May; 13(5):4980-4991. PubMed ID: 30998312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of highly dispersible and tumor-accumulative, iron oxide nanoparticles Multi-point anchoring of PEG-b-poly(4-vinylbenzylphosphonate) improves performance significantly.
    Ujiie K; Kanayama N; Asai K; Kishimoto M; Ohara Y; Akashi Y; Yamada K; Hashimoto S; Oda T; Ohkohchi N; Yanagihara H; Kita E; Yamaguchi M; Fujii H; Nagasaki Y
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):771-8. PubMed ID: 21890332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages.
    Escamilla-Rivera V; Uribe-Ramírez M; González-Pozos S; Lozano O; Lucas S; De Vizcaya-Ruiz A
    Toxicol Lett; 2016 Jan; 240(1):172-84. PubMed ID: 26518974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin.
    Leitner NS; Schroffenegger M; Reimhult E
    ACS Appl Bio Mater; 2021 Jan; 4(1):795-806. PubMed ID: 33490885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.