BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28783310)

  • 1. Controlled Engineering of Oxide Surfaces for Bioelectronics Applications Using Organic Mixed Monolayers.
    Markov A; Wolf N; Yuan X; Mayer D; Maybeck V; Offenhäusser A; Wördenweber R
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29265-29272. PubMed ID: 28783310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Neuron Growth and Enhancing Cell-Chip Communication via Mixed SAMs.
    Markov A; Maybeck V; Wolf N; Mayer D; Offenhäusser A; Wördenweber R
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18507-18514. PubMed ID: 29763286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Analysis of the Growth and Dielectric Properties of Organic Self-Assembled Monolayers: A Way To Tailor Organic Layers for Electronic Applications.
    Markov A; Greben K; Mayer D; Offenhäusser A; Wördenweber R
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16451-6. PubMed ID: 27268402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural investigations of self-assembled monolayers for organic electronics: results from X-ray reflectivity.
    Khassanov A; Steinrück HG; Schmaltz T; Magerl A; Halik M
    Acc Chem Res; 2015 Jul; 48(7):1901-8. PubMed ID: 26072927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapor-Phase Deposition and Electronic Characterization of 3-Aminopropyltriethoxysilane Self-Assembled Monolayers on Silicon Dioxide.
    Yuan X; Wolf N; Mayer D; Offenha Usser A; Wo Rdenweber R
    Langmuir; 2019 Jun; 35(25):8183-8190. PubMed ID: 31144819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Functionalization of Platinum Electrodes with APTES for Bioelectronic Applications.
    Wolf NR; Yuan X; Hassani H; Milos F; Mayer D; Breuer U; Offenhäusser A; Wördenweber R
    ACS Appl Bio Mater; 2020 Oct; 3(10):7113-7121. PubMed ID: 35019371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Biocompatible Interfaces via Combinations of Oxide Films and Organic Self-Assembled Monolayers.
    Yuan X; Wolf N; Hondrich TJJ; Shokoohimehr P; Milos F; Glass M; Mayer D; Maybeck V; Prömpers M; Offenhäusser A; Wördenweber R
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):17121-17129. PubMed ID: 32186363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering silicon oxide surfaces using self-assembled monolayers.
    Onclin S; Ravoo BJ; Reinhoudt DN
    Angew Chem Int Ed Engl; 2005 Oct; 44(39):6282-304. PubMed ID: 16172993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface wettability of (3-aminopropyl)triethoxysilane self-assembled monolayers.
    Zeng X; Xu G; Gao Y; An Y
    J Phys Chem B; 2011 Jan; 115(3):450-4. PubMed ID: 21142166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling assembly of mixed thiol monolayers on silver nanoparticles to tune their surface properties.
    Stewart A; Zheng S; McCourt MR; Bell SE
    ACS Nano; 2012 May; 6(5):3718-26. PubMed ID: 22500816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically Reconfigurable Monolayer of Azobenzene Donor Molecules on Oxide Surfaces.
    McElhinny KM; Huang P; Joo Y; Kanimozhi C; Lakkham A; Sakurai K; Evans PG; Gopalan P
    Langmuir; 2017 Mar; 33(9):2157-2168. PubMed ID: 28170273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One step growth of protein antifouling surfaces: monolayers of poly(ethylene oxide) (PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces.
    Cecchet F; De Meersman B; Demoustier-Champagne S; Nysten B; Jonas AM
    Langmuir; 2006 Jan; 22(3):1173-81. PubMed ID: 16430281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification of self-assembled silane based monolayers by surface reactions.
    Haensch C; Hoeppener S; Schubert US
    Chem Soc Rev; 2010 Jun; 39(6):2323-34. PubMed ID: 20424728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled Monolayers of Push-Pull Chromophores as Active Layers and Their Applications.
    Wang J; Gadenne V; Patrone L; Raimundo JM
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frictional properties of mixed fluorocarbon/hydrocarbon silane monolayers: a simulation study.
    Lewis JB; Vilt SG; Rivera JL; Jennings GK; McCabe C
    Langmuir; 2012 Oct; 28(40):14218-26. PubMed ID: 22937771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self assembled monolayers on silicon for molecular electronics.
    Aswal DK; Lenfant S; Guerin D; Yakhmi JV; Vuillaume D
    Anal Chim Acta; 2006 May; 568(1-2):84-108. PubMed ID: 17761249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physically self-assembled monolayers (PSAMs) of lecithin lipids at hydrophilic silicon oxide interfaces.
    Phang TL; Franses EI
    Langmuir; 2006 Feb; 22(4):1609-18. PubMed ID: 16460081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the quality of monoreactive perfluoroalkylsilane-based self-assembled monolayers.
    Gong Y; Wang MC; Zhang X; Ng HW; Gates BD
    Langmuir; 2012 Aug; 28(32):11790-801. PubMed ID: 22784021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidentate adsorbates for self-assembled monolayer films.
    Chinwangso P; Jamison AC; Lee TR
    Acc Chem Res; 2011 Jul; 44(7):511-9. PubMed ID: 21612198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.