BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 28783317)

  • 1. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
    Joe-Wong C; Brown GE; Maher K
    Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.
    Sarkar B; Naidu R; Krishnamurti GS; Megharaj M
    Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals.
    Liao W; Ye Z; Yuan S; Cai Q; Tong M; Qian A; Cheng D
    Environ Sci Technol; 2019 Dec; 53(23):13767-13775. PubMed ID: 31702131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI) Reduction by Siderophore Alone and in Combination with Reduced Clay Minerals.
    Zhang D; Liu X; Guo D; Li G; Qu J; Dong H
    Environ Sci Technol; 2022 Sep; 56(17):12315-12324. PubMed ID: 35969222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic considerations on the combined effect of electron shuttles and iron(III)-bearing clay mineral on Cr(VI) reduction by Shewanella oneidensis MR-1.
    Meng Y; Yuan Q; Luan F
    J Hazard Mater; 2023 Oct; 459():132144. PubMed ID: 37517234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.
    Kang C; Wu P; Li Y; Ruan B; Li L; Tran L; Zhu N; Dang Z
    World J Microbiol Biotechnol; 2015 Nov; 31(11):1765-79. PubMed ID: 26296415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.
    Luan F; Gorski CA; Burgos WD
    Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of clay minerals on Cr(VI) reduction by organic compounds.
    Deng B; Lan L; Houston K; Brady PV
    Environ Monit Assess; 2003 May; 84(1-2):5-18. PubMed ID: 12733805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of natural Fe(II)-bearing minerals in chemoautotrophic chromium (VI) bio-reduction in groundwater.
    Lu J; Zhang B; He C; Borthwick AGL
    J Hazard Mater; 2020 May; 389():121911. PubMed ID: 31879105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone.
    Qafoku O; Pearce CI; Neumann A; Kovarik L; Zhu M; Ilton ES; Bowden ME; Resch CT; Arey BW; Arenholz E; Felmy AR; Rosso KM
    Environ Sci Technol; 2017 Aug; 51(16):9042-9052. PubMed ID: 28703576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles.
    Geng B; Jin Z; Li T; Qi X
    Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite.
    Kiser JR; Manning BA
    J Hazard Mater; 2010 Feb; 174(1-3):167-74. PubMed ID: 19796874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Insight into the Natural Detoxification of Cr(VI) in Fe-Rich Surface Soil: Crucial Role of Photogenerated Silicate-Bound Fe(II).
    Zhang Z; Ren J; Liang J; Xu X; Zhao L; Qiu H; Li H; Cao X
    Environ Sci Technol; 2023 Dec; 57(50):21370-21381. PubMed ID: 37946506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effects of Reduced Nontronite and Organic Ligands on Cr(VI) Reduction.
    Liu X; Dong H; Zeng Q; Yang X; Zhang D
    Environ Sci Technol; 2019 Dec; 53(23):13732-13741. PubMed ID: 31692337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II).
    Hu Y; Xue Q; Tang J; Fan X; Chen H
    Chemosphere; 2019 May; 222():511-516. PubMed ID: 30721809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.