These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 28783317)
1. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals. Joe-Wong C; Brown GE; Maher K Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317 [TBL] [Abstract][Full Text] [Related]
2. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate. Sarkar B; Naidu R; Krishnamurti GS; Megharaj M Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488 [TBL] [Abstract][Full Text] [Related]
3. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals. Liao W; Ye Z; Yuan S; Cai Q; Tong M; Qian A; Cheng D Environ Sci Technol; 2019 Dec; 53(23):13767-13775. PubMed ID: 31702131 [TBL] [Abstract][Full Text] [Related]
4. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide. Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013 [TBL] [Abstract][Full Text] [Related]
5. Phytic acid inhibits Cr(VI) reduction on Fe(II)-bearing clay minerals: Changing reduction sites and electron transfer pathways. Wang S; Wu C; Peng W; Huang D; Liao W; Cui HJ Environ Pollut; 2024 Nov; 360():124701. PubMed ID: 39127337 [TBL] [Abstract][Full Text] [Related]
6. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1. Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936 [TBL] [Abstract][Full Text] [Related]
7. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides. Whitaker AH; Peña J; Amor M; Duckworth OW Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797 [TBL] [Abstract][Full Text] [Related]
8. Cr(VI) Reduction by Siderophore Alone and in Combination with Reduced Clay Minerals. Zhang D; Liu X; Guo D; Li G; Qu J; Dong H Environ Sci Technol; 2022 Sep; 56(17):12315-12324. PubMed ID: 35969222 [TBL] [Abstract][Full Text] [Related]
9. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite. Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic considerations on the combined effect of electron shuttles and iron(III)-bearing clay mineral on Cr(VI) reduction by Shewanella oneidensis MR-1. Meng Y; Yuan Q; Luan F J Hazard Mater; 2023 Oct; 459():132144. PubMed ID: 37517234 [TBL] [Abstract][Full Text] [Related]
11. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis. Kang C; Wu P; Li Y; Ruan B; Li L; Tran L; Zhu N; Dang Z World J Microbiol Biotechnol; 2015 Nov; 31(11):1765-79. PubMed ID: 26296415 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium. Luan F; Gorski CA; Burgos WD Environ Sci Technol; 2014; 48(5):2750-8. PubMed ID: 24512199 [TBL] [Abstract][Full Text] [Related]
13. Effects of clay minerals on Cr(VI) reduction by organic compounds. Deng B; Lan L; Houston K; Brady PV Environ Monit Assess; 2003 May; 84(1-2):5-18. PubMed ID: 12733805 [TBL] [Abstract][Full Text] [Related]
14. The role of natural Fe(II)-bearing minerals in chemoautotrophic chromium (VI) bio-reduction in groundwater. Lu J; Zhang B; He C; Borthwick AGL J Hazard Mater; 2020 May; 389():121911. PubMed ID: 31879105 [TBL] [Abstract][Full Text] [Related]
15. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone. Qafoku O; Pearce CI; Neumann A; Kovarik L; Zhu M; Ilton ES; Bowden ME; Resch CT; Arey BW; Arenholz E; Felmy AR; Rosso KM Environ Sci Technol; 2017 Aug; 51(16):9042-9052. PubMed ID: 28703576 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Geng B; Jin Z; Li T; Qi X Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139 [TBL] [Abstract][Full Text] [Related]
17. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite. Kiser JR; Manning BA J Hazard Mater; 2010 Feb; 174(1-3):167-74. PubMed ID: 19796874 [TBL] [Abstract][Full Text] [Related]
18. New Insight into the Natural Detoxification of Cr(VI) in Fe-Rich Surface Soil: Crucial Role of Photogenerated Silicate-Bound Fe(II). Zhang Z; Ren J; Liang J; Xu X; Zhao L; Qiu H; Li H; Cao X Environ Sci Technol; 2023 Dec; 57(50):21370-21381. PubMed ID: 37946506 [TBL] [Abstract][Full Text] [Related]
19. Synergistic Effects of Reduced Nontronite and Organic Ligands on Cr(VI) Reduction. Liu X; Dong H; Zeng Q; Yang X; Zhang D Environ Sci Technol; 2019 Dec; 53(23):13732-13741. PubMed ID: 31692337 [TBL] [Abstract][Full Text] [Related]
20. New insights on Cr(VI) retention by ferrihydrite in the presence of Fe(II). Hu Y; Xue Q; Tang J; Fan X; Chen H Chemosphere; 2019 May; 222():511-516. PubMed ID: 30721809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]