These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 28783317)
21. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH. Gheju M; Iovi A; Balcu I J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460 [TBL] [Abstract][Full Text] [Related]
22. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral. Schaefer MV; Gorski CA; Scherer MM Environ Sci Technol; 2011 Jan; 45(2):540-5. PubMed ID: 21138293 [TBL] [Abstract][Full Text] [Related]
23. Mechanisms of chromium(VI) removal from solution by zeolite and vermiculite modified with iron(II). Rosa MIG; Boga GA; Cruz SSV; Andrade FRD; Furquim SAC; Shinzato MC Environ Sci Pollut Res Int; 2022 Jul; 29(33):49724-49738. PubMed ID: 35218482 [TBL] [Abstract][Full Text] [Related]
24. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH. Sun J; Mao JD; Gong H; Lan Y J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002 [TBL] [Abstract][Full Text] [Related]
25. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides. Burton ED; Choppala G; Karimian N; Johnston SG Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817 [TBL] [Abstract][Full Text] [Related]
26. Reactivity of Fe(II) species associated with clay minerals. Hofstetter TB; Schwarzenbach RP; Haderlein SB Environ Sci Technol; 2003 Feb; 37(3):519-28. PubMed ID: 12630467 [TBL] [Abstract][Full Text] [Related]
27. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles. Wu P; Li S; Ju L; Zhu N; Wu J; Li P; Dang Z J Hazard Mater; 2012 Jun; 219-220():283-8. PubMed ID: 22521796 [TBL] [Abstract][Full Text] [Related]
28. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis. Hori M; Shozugawa K; Matsuo M J Hazard Mater; 2015 Mar; 285():140-7. PubMed ID: 25497027 [TBL] [Abstract][Full Text] [Related]
30. Oxidation of Cr(III)-Fe(III) Mixed-Phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water. Chebeir M; Liu H Environ Sci Technol; 2018 Jul; 52(14):7663-7670. PubMed ID: 29772182 [TBL] [Abstract][Full Text] [Related]
31. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena. Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251 [TBL] [Abstract][Full Text] [Related]
32. Interaction between hexavalent chromium and biologically formed iron mineral-biochar composites: Kinetics, products and mechanisms. Liu L; Liu G; Zhou J; Jin R J Hazard Mater; 2021 Mar; 405():124246. PubMed ID: 33097346 [TBL] [Abstract][Full Text] [Related]
33. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration. Bansal N; Coetzee JJ; Chirwa EMN Ecotoxicol Environ Saf; 2019 May; 172():281-289. PubMed ID: 30716662 [TBL] [Abstract][Full Text] [Related]
34. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters. Toli A; Chalastara K; Mystrioti C; Xenidis A; Papassiopi N Environ Pollut; 2016 Jul; 214():419-429. PubMed ID: 27108046 [TBL] [Abstract][Full Text] [Related]
35. Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar. Kim HB; Kim JG; Kim SH; Kwon EE; Baek K Environ Pollut; 2019 Oct; 253():231-238. PubMed ID: 31310873 [TBL] [Abstract][Full Text] [Related]
36. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions. Jeen SW; Blowes DW; Gillham RW J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283 [TBL] [Abstract][Full Text] [Related]
37. Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation. Pan C; Troyer LD; Liao P; Catalano JG; Li W; Giammar DE Environ Sci Technol; 2017 Jun; 51(11):6308-6318. PubMed ID: 28530105 [TBL] [Abstract][Full Text] [Related]
38. Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons. Yang JE; Kim JS; Ok YS; Yoo KR Water Sci Technol; 2007; 55(1-2):197-202. PubMed ID: 17305140 [TBL] [Abstract][Full Text] [Related]
39. Dynamics of Chromium(VI) Removal from Drinking Water by Iron Electrocoagulation. Pan C; Troyer LD; Catalano JG; Giammar DE Environ Sci Technol; 2016 Dec; 50(24):13502-13510. PubMed ID: 27993045 [TBL] [Abstract][Full Text] [Related]
40. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of bisphenol A induced by Fe(III)-OH complexes in water. Liu Y; Deng L; Chen Y; Wu F; Deng N J Hazard Mater; 2007 Jan; 139(2):399-402. PubMed ID: 16844289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]