These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28783341)

  • 1. Synthesis of Mechanically Planar Chiral rac-[2]Rotaxanes by Partitioning of an Achiral [2]Rotaxane: Stereoinversion Induced by Shuttling.
    Mochizuki Y; Ikeyatsu K; Mutoh Y; Hosoya S; Saito S
    Org Lett; 2017 Aug; 19(16):4347-4350. PubMed ID: 28783341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Step Enantioselective Synthesis of Mechanically Planar Chiral [2]Rotaxanes Using a Chiral Leaving Group Strategy.
    Tian C; Fielden SDP; Pérez-Saavedra B; Vitorica-Yrezabal IJ; Leigh DA
    J Am Chem Soc; 2020 May; 142(21):9803-9808. PubMed ID: 32356978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-yield diastereoselective synthesis of planar chiral [2]- and [3]rotaxanes constructed from per-ethylated pillar[5]arene and pyridinium derivatives.
    Ogoshi T; Yamafuji D; Aoki T; Kitajima K; Yamagishi TA; Hayashi Y; Kawauchi S
    Chemistry; 2012 Jun; 18(24):7493-500. PubMed ID: 22544474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric benzoin condensation catalyzed by chiral rotaxanes tethering a thiazolium salt moiety via the cooperation of the component: can rotaxane be an effective reaction field?
    Tachibana Y; Kihara N; Takata T
    J Am Chem Soc; 2004 Mar; 126(11):3438-9. PubMed ID: 15025467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Shuttling Behavior of [2]Rotaxanes with a Pyrrole Moiety.
    Matsuoka Y; Mutoh Y; Azumaya I; Kikkawa S; Kasama T; Saito S
    J Org Chem; 2016 May; 81(9):3479-87. PubMed ID: 26949996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotaxanes with dynamic mechanical chirality: Systematic studies on synthesis, enantiomer separation, racemization, and chiral-prochiral interconversion.
    Ishiwari F; Takata T
    Front Chem; 2022; 10():1025977. PubMed ID: 36386001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy.
    Imayoshi A; Lakshmi BV; Ueda Y; Yoshimura T; Matayoshi A; Furuta T; Kawabata T
    Nat Commun; 2021 Jan; 12(1):404. PubMed ID: 33452235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a Mechanically Planar Chiral Rotaxane Ligand for Enantioselective Catalysis.
    Heard AW; Goldup SM
    Chem; 2020 Apr; 6(4):994-1006. PubMed ID: 32309674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locking the Dynamic Axial Chirality of Biphenyl Crown Ethers through Threading.
    Kimura T; Miyagawa S; Takaya H; Naito M; Tokunaga Y
    Chem Asian J; 2020 Nov; 15(22):3897-3903. PubMed ID: 33026146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of Single-Handed Helicity of Polyacetylenes Using Mechanically Chiral Rotaxanes as Chiral Sources.
    Ishiwari F; Nakazono K; Koyama Y; Takata T
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):14858-14862. PubMed ID: 28973787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical On/Off Switching of Mechanically Planar Chirality and Chiral Anion Recognition in a [2]Rotaxane Molecular Shuttle.
    Corra S; de Vet C; Groppi J; La Rosa M; Silvi S; Baroncini M; Credi A
    J Am Chem Soc; 2019 Jun; 141(23):9129-9133. PubMed ID: 31129959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective Anion Recognition by Chiral Halogen-Bonding [2]Rotaxanes.
    Lim JYC; Marques I; Félix V; Beer PD
    J Am Chem Soc; 2017 Sep; 139(35):12228-12239. PubMed ID: 28777563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ring-through-ring molecular shuttling in a saturated [3]rotaxane.
    Zhu K; Baggi G; Loeb SJ
    Nat Chem; 2018 Jun; 10(6):625-630. PubMed ID: 29713030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiroptical inversion of a planar chiral redox-switchable rotaxane.
    Gaedke M; Witte F; Anhäuser J; Hupatz H; Schröder HV; Valkonen A; Rissanen K; Lützen A; Paulus B; Schalley CA
    Chem Sci; 2019 Nov; 10(43):10003-10009. PubMed ID: 32055357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of axle-core, macrocycle, and side-station structures on the threading and hydrolysis processes of imine-bridged rotaxanes.
    Sugino H; Kawai H; Umehara T; Fujiwara K; Suzuki T
    Chemistry; 2012 Oct; 18(43):13722-32. PubMed ID: 22996640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically Planar-to-Point Chirality Transmission in [2]Rotaxanes.
    Puigcerver J; Marin-Luna M; Iglesias-Sigüenza J; Alajarin M; Martinez-Cuezva A; Berna J
    J Am Chem Soc; 2024 Feb; 146(5):2882-2887. PubMed ID: 38266249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes.
    Tachibana Y; Kawasaki H; Kihara N; Takata T
    J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-threaded "molecular 8".
    Reuter C; Wienand W; Schmuck C; Vögtle F
    Chemistry; 2001 Apr; 7(8):1728-33. PubMed ID: 11349914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes.
    de Juan A; Lozano D; Heard AW; Jinks MA; Suarez JM; Tizzard GJ; Goldup SM
    Nat Chem; 2022 Feb; 14(2):179-187. PubMed ID: 34845345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel Allosteric Inhibition of Shuttling Motion and Catalysis in a Silver(I)-loaded [2]Rotaxane.
    Kundu S; Mondal D; Elramadi E; Valiyev I; Schmittel M
    Org Lett; 2022 Sep; 24(36):6609-6613. PubMed ID: 36053156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.