These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 28783360)

  • 1. Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors.
    Thierbach A; Neiss C; Gallandi L; Marom N; Körzdörfer T; Görling A
    J Chem Theory Comput; 2017 Oct; 13(10):4726-4740. PubMed ID: 28783360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical accuracy with σ-functionals for the Kohn-Sham correlation energy optimized for different input orbitals and eigenvalues.
    Fauser S; Trushin E; Neiss C; Görling A
    J Chem Phys; 2021 Oct; 155(13):134111. PubMed ID: 34624971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-interaction-free local hybrid functional: accurate binding energies vis-à-vis accurate ionization potentials from Kohn-Sham eigenvalues.
    Schmidt T; Kraisler E; Makmal A; Kronik L; Kümmel S
    J Chem Phys; 2014 May; 140(18):18A510. PubMed ID: 24832318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved electronic excitation energies from shape-corrected semilocal Kohn-Sham potentials.
    Gaiduk AP; Firaha DS; Staroverov VN
    Phys Rev Lett; 2012 Jun; 108(25):253005. PubMed ID: 23004596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of the G
    Morales-García Á; Valero R; Illas F
    J Chem Theory Comput; 2017 Aug; 13(8):3746-3753. PubMed ID: 28641004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of DFT methods for molecular orbital eigenvalue calculations.
    Zhang G; Musgrave CB
    J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ensemble generalization on the highest-occupied Kohn-Sham eigenvalue.
    Kraisler E; Schmidt T; Kümmel S; Kronik L
    J Chem Phys; 2015 Sep; 143(10):104105. PubMed ID: 26374016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity.
    Teale AM; De Proft F; Tozer DJ
    J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core ionization potentials from self-interaction corrected Kohn-Sham orbital energies.
    Tu G; Carravetta V; Vahtras O; Agren H
    J Chem Phys; 2007 Nov; 127(17):174110. PubMed ID: 17994810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Kohn-Sham equations with accurate total energy and single-particle eigenvalue spectrum.
    Pitts TC; Lathiotakis NN; Gidopoulos N
    J Chem Phys; 2021 Dec; 155(22):224105. PubMed ID: 34911317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-interaction-corrected Kohn-Sham effective potentials using the density-consistent effective potential method.
    Diaz CM; Basurto L; Adhikari S; Yamamoto Y; Ruzsinszky A; Baruah T; Zope RR
    J Chem Phys; 2021 Aug; 155(6):064109. PubMed ID: 34391355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.
    Kananenka AA; Kohut SV; Gaiduk AP; Ryabinkin IG; Staroverov VN
    J Chem Phys; 2013 Aug; 139(7):074112. PubMed ID: 23968077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient self-consistent treatment of electron correlation within the random phase approximation.
    Bleiziffer P; Heßelmann A; Görling A
    J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation energies expressed as orbital energies of Kohn-Sham density functional theory with long-range corrected functionals.
    Hirao K; Chan B; Song JW; Bhattarai K; Tewary S
    J Comput Chem; 2020 May; 41(14):1368-1383. PubMed ID: 32108955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials.
    Verma P; Bartlett RJ
    J Chem Phys; 2016 Jul; 145(3):034108. PubMed ID: 27448875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaled σ-functionals for the Kohn-Sham correlation energy with scaling functions from the homogeneous electron gas.
    Erhard J; Fauser S; Trushin E; Görling A
    J Chem Phys; 2022 Sep; 157(11):114105. PubMed ID: 36137780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic structure of BN-aromatics: Choice of reliable computational tools.
    Mazière A; Chrostowska A; Darrigan C; Dargelos A; Graciaa A; Chermette H
    J Chem Phys; 2017 Oct; 147(16):164306. PubMed ID: 29096486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate computation of X-ray absorption spectra with ionization potential optimized global hybrid functional.
    Jin Y; Bartlett RJ
    J Chem Phys; 2018 Aug; 149(6):064111. PubMed ID: 30111144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory.
    Sharpe DJ; Levy M; Tozer DJ
    J Chem Theory Comput; 2018 Feb; 14(2):684-692. PubMed ID: 29298061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.