BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28783426)

  • 1. Characterization of the piRNA pathway during development of the sea anemone Nematostella vectensis.
    Praher D; Zimmermann B; Genikhovich G; Columbus-Shenkar Y; Modepalli V; Aharoni R; Moran Y; Technau U
    RNA Biol; 2017 Dec; 14(12):1727-1741. PubMed ID: 28783426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The methyltransferase HEN1 is required in Nematostella vectensis for microRNA and piRNA stability as well as larval metamorphosis.
    Modepalli V; Fridrich A; Agron M; Moran Y
    PLoS Genet; 2018 Aug; 14(8):e1007590. PubMed ID: 30118479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway.
    Lim RS; Anand A; Nishimiya-Fujisawa C; Kobayashi S; Kai T
    Dev Biol; 2014 Feb; 386(1):237-51. PubMed ID: 24355748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Tudor domain protein Tapas, a homolog of the vertebrate Tdrd7, functions in the piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster.
    Patil VS; Anand A; Chakrabarti A; Kai T
    BMC Biol; 2014 Oct; 12():61. PubMed ID: 25287931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PIWI-piRNA pathway-mediated transposable element repression in
    Teefy BB; Siebert S; Cazet JF; Lin H; Juliano CE
    RNA; 2020 May; 26(5):550-563. PubMed ID: 32075940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silencing transposable elements in the Drosophila germline.
    Yang F; Xi R
    Cell Mol Life Sci; 2017 Feb; 74(3):435-448. PubMed ID: 27600679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Untangling the web: the diverse functions of the PIWI/piRNA pathway.
    Mani SR; Juliano CE
    Mol Reprod Dev; 2013 Aug; 80(8):632-64. PubMed ID: 23712694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals.
    Grimson A; Srivastava M; Fahey B; Woodcroft BJ; Chiang HR; King N; Degnan BM; Rokhsar DS; Bartel DP
    Nature; 2008 Oct; 455(7217):1193-7. PubMed ID: 18830242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The piRNA pathway in Drosophila ovarian germ and somatic cells.
    Sato K; Siomi MC
    Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(1):32-42. PubMed ID: 31932527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid evolution of piRNA pathway and its transposon targets in Japanese flounder (Paralichthys olivaceus).
    Song H; Xing C; Lu W; Liu Z; Wang X; Cheng J; Zhang Q
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Sep; 31():100609. PubMed ID: 31362144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms.
    Juliano C; Wang J; Lin H
    Annu Rev Genet; 2011; 45():447-69. PubMed ID: 21942366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging roles and functional mechanisms of PIWI-interacting RNAs.
    Wang X; Ramat A; Simonelig M; Liu MF
    Nat Rev Mol Cell Biol; 2023 Feb; 24(2):123-141. PubMed ID: 36104626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early
    Fabry MH; Falconio FA; Joud F; Lythgoe EK; Czech B; Hannon GJ
    Elife; 2021 Jul; 10():. PubMed ID: 34236313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundant expression of somatic transposon-derived piRNAs throughout Tribolium castaneum embryogenesis.
    Ninova M; Griffiths-Jones S; Ronshaugen M
    Genome Biol; 2017 Sep; 18(1):184. PubMed ID: 28950880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical role for nucleoporin 358 (Nup358) in transposon silencing and piRNA biogenesis in
    Parikh RY; Lin H; Gangaraju VK
    J Biol Chem; 2018 Jun; 293(24):9140-9147. PubMed ID: 29735528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA.
    Perera BPU; Tsai ZT; Colwell ML; Jones TR; Goodrich JM; Wang K; Sartor MA; Faulk C; Dolinoy DC
    Epigenetics; 2019 May; 14(5):504-521. PubMed ID: 30955436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tupaia small RNAs provide insights into function and evolution of RNAi-based transposon defense in mammals.
    Rosenkranz D; Rudloff S; Bastuck K; Ketting RF; Zischler H
    RNA; 2015 May; 21(5):911-22. PubMed ID: 25802409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling the developmental and functional significance of an ancient Argonaute duplication.
    Fridrich A; Modepalli V; Lewandowska M; Aharoni R; Moran Y
    Nat Commun; 2020 Dec; 11(1):6187. PubMed ID: 33273471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines.
    Ishizu H; Siomi H; Siomi MC
    Genes Dev; 2012 Nov; 26(21):2361-73. PubMed ID: 23124062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. piRNA pathway and the potential processing site, the nuage, in the Drosophila germline.
    Pek JW; Patil VS; Kai T
    Dev Growth Differ; 2012 Jan; 54(1):66-77. PubMed ID: 23741748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.