These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28783435)

  • 41. Effect of doping level of colored TiO2 nanotube arrays fabricated by electrochemical self-doping on electrochemical properties.
    Kim C; Kim S; Hong SP; Lee J; Yoon J
    Phys Chem Chem Phys; 2016 Jun; 18(21):14370-5. PubMed ID: 27169417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications.
    Indira K; Mudali UK; Rajendran N
    J Biomater Appl; 2014 Jul; 29(1):113-29. PubMed ID: 24346137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand.
    Wang C; Wu J; Wang P; Ao Y; Hou J; Qian J
    Anal Chim Acta; 2013 Mar; 767():141-7. PubMed ID: 23452798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cobalt-Nickel Layered Double Hydroxides Modified on TiO
    Chen W; Wang T; Xue J; Li S; Wang Z; Sun S
    Small; 2017 Mar; 13(10):. PubMed ID: 28026124
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity.
    Xie Y; Ali G; Yoo SH; Cho SO
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2910-4. PubMed ID: 20849087
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance.
    Zhang J; Bang JH; Tang C; Kamat PV
    ACS Nano; 2010 Jan; 4(1):387-95. PubMed ID: 20000756
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photocurrent response and semiconductor characteristics of Ce-Ce2O3-CeO2-modified TiO2 nanotube arrays.
    Tan Y; Zhang S; Liang K
    Nanoscale Res Lett; 2014 Feb; 9(1):67. PubMed ID: 24512541
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blue TiO
    Peighambardoust NS; Aydemir U
    Turk J Chem; 2020; 44(6):1642-1654. PubMed ID: 33488259
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synergizing the multiple plasmon resonance coupling and quantum effects to obtain enhanced SERS and PEC performance simultaneously on a noble metal-semiconductor substrate.
    Yang T; Liu W; Li L; Chen J; Hou X; Chou KC
    Nanoscale; 2017 Feb; 9(6):2376-2384. PubMed ID: 28145543
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis and photoinduced charge-transfer properties of a ZnFe2O4-sensitized TiO2 nanotube array electrode.
    Li X; Hou Y; Zhao Q; Chen G
    Langmuir; 2011 Mar; 27(6):3113-20. PubMed ID: 21332125
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PbS sensitized TiO2 nanotube arrays with different sizes and filling degrees for enhancing photoelectrochemical properties.
    Cai F; Yang F; Zhang Y; Ke C; Cheng C; Zhao Y; Yan G
    Phys Chem Chem Phys; 2014 Nov; 16(43):23967-74. PubMed ID: 25286398
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical synthesis of self-organized TiO
    Giorgi L; Dikonimos T; Giorgi R; Buonocore F; Faggio G; Messina G; Lisi N
    Nanotechnology; 2018 Mar; 29(9):095604. PubMed ID: 29283108
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting.
    Chen Y; Li A; Yue X; Wang LN; Huang ZH; Kang F; Volinsky AA
    Nanoscale; 2016 Jul; 8(27):13228-35. PubMed ID: 26926569
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Defect-induced betavoltaic enhancement in black titania nanotube arrays.
    Wang N; Ma Y; Chen J; Chen C; San H; Chen J; Cheng Z
    Nanoscale; 2018 Jul; 10(27):13028-13036. PubMed ID: 29952389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A visible-light-driven photoelectrochemical molecularly imprinted sensor based on titanium dioxide nanotube arrays loaded with silver iodide nanoparticles for the sensitive detection of benzoyl peroxide.
    Zhong L; Li X; Liu R; Wei X; Li J
    Analyst; 2019 May; 144(10):3405-3413. PubMed ID: 30994646
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays.
    Xu Z; Yu J
    Nanoscale; 2011 Aug; 3(8):3138-44. PubMed ID: 21674119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-oxidation of Glucose.
    Yang Q; Long M; Tan L; Zhang Y; Ouyang J; Liu P; Tang A
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12719-30. PubMed ID: 25970570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal Decomposition Fabrication of Fe2O3 Nanoparticle-Sensitized TiO2 Nanotube Arrays and Their Photoelectrochemical Properties.
    Zhu X; Cui X; Che Z; Jin X; Li M
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9717-20. PubMed ID: 26682402
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    He C; Peng L; Lv L; Cao Y; Tu J; Huang W; Zhang K
    RSC Adv; 2019 May; 9(26):15084-15091. PubMed ID: 35516318
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interfacial Analysis of Anatase TiO
    Lei L; Sang L; Zhang Y; Gao Y
    ACS Omega; 2020 Feb; 5(7):3522-3532. PubMed ID: 32118167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.