BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 28783567)

  • 21. Nutrient removal from pickle industry wastewater by cultivation of Chlorella pyrenoidosa for lipid production.
    Wan L; Wu Y; Zhang X; Zhang W
    Water Sci Technol; 2019 Jun; 79(11):2166-2174. PubMed ID: 31318354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CO
    Jain D; Ghonse SS; Trivedi T; Fernandes GL; Menezes LD; Damare SR; Mamatha SS; Kumar S; Gupta V
    Bioresour Technol; 2019 Feb; 273():672-676. PubMed ID: 30503579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26.
    Ramírez-López C; Chairez I; Fernández-Linares L
    Bioresour Technol; 2016 Jul; 212():207-216. PubMed ID: 27099946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation, Identification and High-Throughput Screening of Neutral Lipid Producing Indigenous Microalgae from South African Aquatic Habitats.
    Gumbi ST; Majeke BM; Olaniran AO; Mutanda T
    Appl Biochem Biotechnol; 2017 May; 182(1):382-399. PubMed ID: 27864781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined effect of CO
    Sheng Y; Mathimani T; Brindhadevi K; Basha S; Elfasakhany A; Xia C; Pugazhendhi A
    Sci Total Environ; 2022 Feb; 808():151969. PubMed ID: 34843758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel.
    El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploration of microalgal species for simultaneous wastewater treatment and biofuel production.
    Jeong D; Jang A
    Environ Res; 2020 Sep; 188():109772. PubMed ID: 32544724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maximizing Biomass and Lipid Production in Heterotrophic Culture of Chlorella vulgaris: Techno-Economic Assessment.
    Morowvat MH; Ghasemi Y
    Recent Pat Food Nutr Agric; 2019; 10(2):115-123. PubMed ID: 30205808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents.
    Asadi P; Rad HA; Qaderi F
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29473-29489. PubMed ID: 31396874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater.
    Hu X; Zhou J; Liu G; Gui B
    J Environ Sci (China); 2016 Aug; 46():83-91. PubMed ID: 27521939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of cell rupturing by ozonation and ultrasonication for algal lipid extraction from Chlorella vulgaris.
    Huang Y; Hong A; Zhang D; Li L
    Environ Technol; 2014; 35(5-8):931-7. PubMed ID: 24645476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of fatty acid profiles of
    Khalaji M
    J Environ Health Sci Eng; 2022 Dec; 20(2):691-697. PubMed ID: 36406613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.
    Ren H; Tuo J; Addy MM; Zhang R; Lu Q; Anderson E; Chen P; Ruan R
    Bioresour Technol; 2017 Dec; 245(Pt A):1130-1138. PubMed ID: 28962086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production.
    Wong YK; Ho YH; Ho KC; Leung HM; Yung KK
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater.
    Acebu PIG; de Luna MDG; Chen CY; Abarca RRM; Chen JH; Chang JS
    Bioresour Technol; 2022 May; 352():127086. PubMed ID: 35364235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous biomass and lipid production from local chlorella-bacteria consortium in raw wastewater using volatile fatty acids.
    Zuo Y; Wongsnansilp T; Zhang X; Chen G; Wu Z
    Biotechnol Lett; 2020 Aug; 42(8):1449-1455. PubMed ID: 32488443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of microalgal biomass productivity through mixotrophic culture process utilizing waste soy sauce and industrial flue gas.
    Lee SY; Lee JS; Sim SJ
    Bioresour Technol; 2023 Apr; 373():128719. PubMed ID: 36773814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production.
    Kuo CM; Chen TY; Lin TH; Kao CY; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2015 Oct; 194():326-33. PubMed ID: 26210147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification.
    Xie D; Ji X; Zhou Y; Dai J; He Y; Sun H; Guo Z; Yang Y; Zheng X; Chen B
    Bioresour Technol; 2022 Apr; 349():126886. PubMed ID: 35217166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation.
    Zhang Z; Guo L; Liao Q; Gao M; Zhao Y; Jin C; She Z; Wang G
    Bioresour Technol; 2021 Oct; 338():125574. PubMed ID: 34303141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.