BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28783612)

  • 1. Toxicity of vanadium in soil on soybean at different growth stages.
    Yang J; Wang M; Jia Y; Gou M; Zeyer J
    Environ Pollut; 2017 Dec; 231(Pt 1):48-58. PubMed ID: 28783612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and speciation of vanadium in the rhizosphere soils of rape (Brassica juncea L.).
    Tian LY; Yang JY; Huang JH
    Environ Sci Pollut Res Int; 2015 Jun; 22(12):9215-23. PubMed ID: 25586612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation of vanadium in Chinese cabbage (Brassica rapa L.) and soils in response to different levels of vanadium in soils and cabbage growth.
    Tian L; Yang J; Alewell C; Huang JH
    Chemosphere; 2014 Sep; 111():89-95. PubMed ID: 24997904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An indoleacetic acid-producing Ochrobactrum sp. MGJ11 counteracts cadmium effect on soybean by promoting plant growth.
    Yu X; Li Y; Cui Y; Liu R; Li Y; Chen Q; Gu Y; Zhao K; Xiang Q; Xu K; Zhang X
    J Appl Microbiol; 2017 Apr; 122(4):987-996. PubMed ID: 27995689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation.
    Chen L; Liu JR; Hu WF; Gao J; Yang JY
    J Hazard Mater; 2021 Mar; 405():124200. PubMed ID: 33092873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth responses, accumulation, translocation and distribution of vanadium in tobacco and its potential in phytoremediation.
    Wu ZZ; Yang JY; Zhang YX; Wang CQ; Guo SS; Yu YQ
    Ecotoxicol Environ Saf; 2021 Jan; 207():111297. PubMed ID: 32949932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium immobilization and alleviation of its toxicity for soybean grown in a clay loam contaminated soil using sugarcane bagasse-derived biochar.
    Mohamed I; Ali M; Ahmed N; Chen F
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21849-21857. PubMed ID: 31134549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadium uptake and translocation in dominant plant species on an urban coastal brownfield site.
    Qian Y; Gallagher FJ; Feng H; Wu M; Zhu Q
    Sci Total Environ; 2014 Apr; 476-477():696-704. PubMed ID: 24518306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of liming on nickel bioavailability and toxicity to oat and soybean grown in field soils containing aged emissions from a nickel refinery.
    Cioccio S; Gopalapillai Y; Dan T; Hale B
    Environ Toxicol Chem; 2017 Apr; 36(4):1110-1119. PubMed ID: 27684576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damage assessment for soybean cultivated in soil with either CeO
    Priester JH; Moritz SC; Espinosa K; Ge Y; Wang Y; Nisbet RM; Schimel JP; Susana Goggi A; Gardea-Torresdey JL; Holden PA
    Sci Total Environ; 2017 Feb; 579():1756-1768. PubMed ID: 27939199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage suffered by swamp morning glory (Ipomoea aquatica Forsk) exposed to vanadium (V).
    Chen T; Li TQ; Yang JY
    Environ Toxicol Chem; 2016 Mar; 35(3):695-701. PubMed ID: 26329124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permissible value for vanadium in allitic udic ferrisols based on physiological responses of green Chinese cabbage and soil microbes.
    Xiao XY; Yang M; Guo ZH; Luo YP; Bi JP
    Biol Trace Elem Res; 2012 Feb; 145(2):225-32. PubMed ID: 21898106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting Effects of Cattle Manure Applications and Root-Induced Changes on Heavy Metal Dynamics in the Rhizosphere of Soybean in an Acidic Haplic Fluvisol: A Chronological Pot Experiment.
    Chu Q; Sha Z; Osaki M; Watanabe T
    J Agric Food Chem; 2017 Apr; 65(15):3085-3095. PubMed ID: 28368588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different phosphorus sources on soybean growth and arsenic uptake under arsenic stress conditions in an acidic ultisol.
    Kamran MA; Xu RK; Li JY; Jiang J; Nkoh JN
    Ecotoxicol Environ Saf; 2018 Dec; 165():11-18. PubMed ID: 30173021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil-to-soybean transfer of (99)Tc and its underground distribution in differently contaminated upland soils.
    Choi YH; Lim KM; Jun I; Kim BH; Keum DK; Kim IG
    J Environ Radioact; 2014 Jun; 132():57-64. PubMed ID: 24556176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum uptake and migration from the soil compartment into Betula pendula for two different environments: a polluted and environmentally protected area of Poland.
    Frankowski M
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1398-407. PubMed ID: 26370811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil.
    Singh J; Lee BK
    J Environ Manage; 2016 Apr; 170():88-96. PubMed ID: 26803259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill].
    Salazar MJ; Rodriguez JH; Leonardo Nieto G; Pignata ML
    J Hazard Mater; 2012 Sep; 233-234():244-53. PubMed ID: 22835772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth Responses and Accumulation of Vanadium in Alfalfa, Milkvetch Root, and Swamp Morning Glory and Their Potential in Phytoremediation.
    Gan CD; Chen T; Yang JY
    Bull Environ Contam Toxicol; 2021 Sep; 107(3):559-564. PubMed ID: 34216229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.