BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 28783651)

  • 1. Automatic Recognition of Activities of Daily Living Utilizing Insole-Based and Wrist-Worn Wearable Sensors.
    Hegde N; Bries M; Swibas T; Melanson E; Sazonov E; Hegde N; Bries M; Swibas T; Melanson E; Sazonov E
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):979-988. PubMed ID: 28783651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One size fits all electronics for insole-based activity monitoring.
    Hegde N; Bries M; Melanson E; Sazonov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3564-3567. PubMed ID: 29060668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A
    BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of Daily Gestures with Wearable Inertial Rings and Bracelets.
    Moschetti A; Fiorini L; Esposito D; Dario P; Cavallo F
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27556473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity classification based on inertial and barometric pressure sensors at different anatomical locations.
    Moncada-Torres A; Leuenberger K; Gonzenbach R; Luft A; Gassert R
    Physiol Meas; 2014 Jul; 35(7):1245-63. PubMed ID: 24853451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions.
    Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M
    Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity Recognition Using Complex Network Analysis.
    Jalloul N; Poree F; Viardot G; L Hostis P; Carrault G; Jalloul N; Poree F; Viardot G; L' Hostis P; Carrault G
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):989-1000. PubMed ID: 29028218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring Micro-Activities Using Wearable Sensing for ADL Recognition of Home-Care Patients.
    Sridharan M; Bigham J; Campbell PM; Phillips C; Bodanese E
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):747-759. PubMed ID: 31144647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Daily Activities for the Elderly Using Wearable Sensors.
    Liu J; Sohn J; Kim S
    J Healthc Eng; 2017; 2017():8934816. PubMed ID: 29317996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pediatric SmartShoe: Wearable Sensor System for Ambulatory Monitoring of Physical Activity and Gait.
    Hegde N; Zhang T; Uswatte G; Taub E; Barman J; McKay S; Taylor A; Morris DM; Griffin A; Sazonov ES
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):477-486. PubMed ID: 29432115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a real time activity monitoring Android application utilizing SmartStep.
    Hegde N; Melanson E; Sazonov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1886-1889. PubMed ID: 28268695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey.
    Can YS; Arnrich B; Ersoy C
    J Biomed Inform; 2019 Apr; 92():103139. PubMed ID: 30825538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors.
    Wang Z; Jiang M; Hu Y; Li H
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):691-9. PubMed ID: 22614724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posture and activity recognition and energy expenditure estimation in a wearable platform.
    Sazonov E; Hegde N; Browning RC; Melanson EL; Sazonova NA
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1339-46. PubMed ID: 26011870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognizing Manual Activities Using Wearable Inertial Measurement Units: Clinical Application for Outcome Measurement.
    El Khoury G; Penta M; Barbier O; Libouton X; Thonnard JL; Lefèvre P
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of a custom physical activity and knee angle measurement sensor system for patients with neuromuscular disorders and gait abnormalities.
    Feldhege F; Mau-Moeller A; Lindner T; Hein A; Markschies A; Zettl UK; Bader R
    Sensors (Basel); 2015 May; 15(5):10734-52. PubMed ID: 25954954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.