These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28783798)

  • 1. Investigating the Role of Soil Texture in Vapor Intrusion from Groundwater Sources.
    Yao Y; Wang Y; Zhong Z; Tang M; Suuberg EM
    J Environ Qual; 2017 Jul; 46(4):776-784. PubMed ID: 28783798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining the use of USEPA's Generic Attenuation Factor in determining groundwater screening levels for vapor intrusion.
    Yao Y; Verginelli I; Suuberg EM; Eklund B
    Ground Water Monit Remediat; 2018; 38(2):79-89. PubMed ID: 30524180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Role of Soil Texture in Petroleum Vapor Intrusion.
    Yao Y; Mao F; Xiao Y; Chen H; Verginelli I; Luo J
    J Environ Qual; 2018 Sep; 47(5):1179-1185. PubMed ID: 30272787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the role of vadose zone breathing in vapor intrusion from contaminated groundwater.
    Man J; Wang G; Chen Q; Yao Y
    J Hazard Mater; 2021 Aug; 416():126272. PubMed ID: 34492998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling quantification of the influence of soil moisture on subslab vapor concentration.
    Shen R; Yao Y; Pennell KG; Suuberg EM
    Environ Sci Process Impacts; 2013 Jul; 15(7):1444-51. PubMed ID: 23752876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining the role of sub-foundation soil texture in chlorinated vapor intrusion from groundwater sources with a two-layer numerical model.
    Yao Y; Xiao Y; Mao F; Chen H; Verginelli I
    J Hazard Mater; 2018 Oct; 359():544-553. PubMed ID: 30096605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vapor intrusion attenuation factors relative to subslab and source, reconsidered in light of background data.
    Yao Y; Wu Y; Suuberg EM; Provoost J; Shen R; Ma J; Liu J
    J Hazard Mater; 2015 Apr; 286():553-61. PubMed ID: 25618001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alternative generic subslab soil gas-to-indoor air attenuation factor for application in commercial, industrial, and other nonresidential settings.
    Hallberg KE; Levy LC; Gonzalez-Abraham R; Lutes CC; Lund LG; Caldwell D
    J Air Waste Manag Assoc; 2021 Sep; 71(9):1148-1158. PubMed ID: 33989123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination.
    Yao Y; Mao F; Xiao Y; Luo J
    Water Res; 2019 Mar; 150():111-119. PubMed ID: 30508708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal moisture content variability beneath and external to a building and the potential effects on vapor intrusion risk assessment.
    Tillman FD; Weaver JW
    Sci Total Environ; 2007 Jun; 379(1):1-15. PubMed ID: 17442380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Database examination, multivariate analysis, and machine learning: Predictions of vapor intrusion attenuation factors.
    Man J; Guo Y; Zhou Q; Yao Y
    Ecotoxicol Environ Saf; 2022 Sep; 242():113874. PubMed ID: 35843107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion.
    Shen R; Pennell KG; Suuberg EM
    Chemosphere; 2014 Jan; 95():140-9. PubMed ID: 24034829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.
    Shen R; Pennell KG; Suuberg EM
    Sci Total Environ; 2012 Oct; 437():110-20. PubMed ID: 22922135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the source to building lateral separation distance in petroleum vapor intrusion.
    Verginelli I; Capobianco O; Baciocchi R
    J Contam Hydrol; 2016 Jun; 189():58-67. PubMed ID: 27116639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of the building pressure cycling method for evaluating vapor intrusion from groundwater contamination.
    Liu Y; Man J; Wang Y; Xiao Y; Tang W; Chen Q; Yao Y
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):35416-35427. PubMed ID: 32594447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physically simulating the effect of lateral vapor source-building separation on soil vapor intrusion: Influences of surface pavements and soil heterogeneity.
    Wang G; Xiao Y; Zuo J; Wang Y; Man J; Tang W; Chen Q; Ma S; Yao Y
    J Contam Hydrol; 2020 Nov; 235():103712. PubMed ID: 32942141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Contaminant Subslab Concentration in Vapor Intrusion Including Lateral Source-Building Separation.
    Yao Y; Shen R; Pennell KG; Suuberg EM
    Vadose Zone J; 2013 Aug; 12(3):. PubMed ID: 24795543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid Flow Model for Predicting the Intrusion Rate of Subsurface Contaminant Vapors into Buildings.
    McAlary TA; Gallinatti J; Thrupp G; Wertz W; Mali D; Dawson H
    Environ Sci Technol; 2018 Aug; 52(15):8438-8445. PubMed ID: 29939732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of site-specific lateral inclusion zone for vapor intrusion based on an analytical approach.
    Yao Y; Wu Y; Tang M; Wang Y; Wang J; Suuberg EM; Jiang L; Liu J
    J Hazard Mater; 2015 Nov; 298():221-31. PubMed ID: 26057584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport and natural attenuation of benzene vapor from a point source in the vadose zone.
    Sun Y; Yue G; Ma J
    Chemosphere; 2023 May; 323():138222. PubMed ID: 36863631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.