These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28783903)

  • 1. Factors affecting oxidative peat decomposition due to land use in tropical peat swamp forests in Indonesia.
    Itoh M; Okimoto Y; Hirano T; Kusin K
    Sci Total Environ; 2017 Dec; 609():906-915. PubMed ID: 28783903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evapotranspiration of tropical peat swamp forests.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2015 May; 21(5):1914-27. PubMed ID: 24912043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia.
    Sakabe A; Itoh M; Hirano T; Kusin K
    Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil carbon dioxide emissions from a rubber plantation on tropical peat.
    Wakhid N; Hirano T; Okimoto Y; Nurzakiah S; Nursyamsi D
    Sci Total Environ; 2017 Mar; 581-582():857-865. PubMed ID: 28088548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration.
    Jauhiainen J; Limin S; Silvennoinen H; Vasander H
    Ecology; 2008 Dec; 89(12):3503-14. PubMed ID: 19137955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia.
    Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S
    Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the fluxes of carbon loss from an undrained tropical peatland ecosystem in Indonesia.
    Asyhari A; Gangga A; Putra CAS; Ritonga RP; Candra RA; Anshari GZ; Bowen JC; Perryman CR; Novita N
    Sci Rep; 2024 May; 14(1):11459. PubMed ID: 38769331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dataset on soil carbon dioxide fluxes from an incubation with tropical peat from three different land-uses in Jambi Sumatra Indonesia.
    Comeau LP; Hergoualc'h K; Verchot LV
    Data Brief; 2021 Dec; 39():107597. PubMed ID: 34901339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings.
    Shuhada SN; Salim S; Nobilly F; Zubaid A; Azhar B
    Ecol Evol; 2017 Sep; 7(18):7187-7200. PubMed ID: 28944010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys.
    Wedeux B; Dalponte M; Schlund M; Hagen S; Cochrane M; Graham L; Usup A; Thomas A; Coomes D
    Glob Chang Biol; 2020 Jul; 26(7):3947-3964. PubMed ID: 32267596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest.
    McCalmont J; Kho LK; Teh YA; Lewis K; Chocholek M; Rumpang E; Hill T
    Glob Chang Biol; 2021 Jun; 27(11):2361-2376. PubMed ID: 33528067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon accumulation of tropical peatlands over millennia: a modeling approach.
    Kurnianto S; Warren M; Talbot J; Kauffman B; Murdiyarso D; Frolking S
    Glob Chang Biol; 2015 Jan; 21(1):431-44. PubMed ID: 25044171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions.
    Anamulai S; Sanusi R; Zubaid A; Lechner AM; Ashton-Butt A; Azhar B
    PeerJ; 2019; 7():e7656. PubMed ID: 31632845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bornean peat swamp forest is a net source of carbon dioxide to the atmosphere.
    Tang ACI; Melling L; Stoy PC; Musin KK; Aeries EB; Waili JW; Shimizu M; Poulter B; Hirata R
    Glob Chang Biol; 2020 Dec; 26(12):6931-6944. PubMed ID: 32881141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term disturbance dynamics and resilience of tropical peat swamp forests.
    Cole LE; Bhagwat SA; Willis KJ
    J Ecol; 2015 Jan; 103(1):16-30. PubMed ID: 26120202
    [No Abstract]   [Full Text] [Related]  

  • 17. Impact of forest plantation on methane emissions from tropical peatland.
    Deshmukh CS; Julius D; Evans CD; Nardi ; Susanto AP; Page SE; Gauci V; Laurén A; Sabiham S; Agus F; Asyhari A; Kurnianto S; Suardiwerianto Y; Desai AR
    Glob Chang Biol; 2020 Apr; 26(4):2477-2495. PubMed ID: 31991028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation.
    Warren M; Frolking S; Dai Z; Kurnianto S
    Mitig Adapt Strateg Glob Chang; 2017; 22(7):1041-1061. PubMed ID: 30093822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of APSIS-InSAR for measuring surface oscillations of tropical peatlands.
    Ledger MJ; Sowter A; Morrison K; Evans CD; Large DJ; Athab A; Gee D; Brown C; Sjögersten S
    PLoS One; 2024; 19(2):e0298939. PubMed ID: 38394278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The amount of carbon released from peat and forest fires in Indonesia during 1997.
    Page SE; Siegert F; Rieley JO; Boehm HD; Jaya A; Limin S
    Nature; 2002 Nov; 420(6911):61-5. PubMed ID: 12422213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.