BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28783918)

  • 1. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor.
    Kalčíková G; Žgajnar Gotvajn A; Kladnik A; Jemec A
    Environ Pollut; 2017 Nov; 230():1108-1115. PubMed ID: 28783918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced adsorption of tetrabromobisphenol a (TBBPA) on cosmetic-derived plastic microbeads and combined effects on zebrafish.
    Yu Y; Ma R; Qu H; Zuo Y; Yu Z; Hu G; Li Z; Chen H; Lin B; Wang B; Yu G
    Chemosphere; 2020 Jun; 248():126067. PubMed ID: 32041069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater.
    Kalčíková G; Alič B; Skalar T; Bundschuh M; Gotvajn AŽ
    Chemosphere; 2017 Dec; 188():25-31. PubMed ID: 28865790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.).
    Mateos-Cárdenas A; Scott DT; Seitmaganbetova G; Frank N A M VP; John O; Marcel A K J
    Sci Total Environ; 2019 Nov; 689():413-421. PubMed ID: 31279188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multigenerational effects of microplastic fragments derived from polyethylene terephthalate bottles on duckweed Lemna minor: Size-dependent effects of microplastics on photosynthesis.
    Cui R; Kwak JI; An YJ
    Sci Total Environ; 2023 May; 872():162159. PubMed ID: 36775180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Response of Duckweed
    Rozman U; Kalčíková G
    Plants (Basel); 2022 Nov; 11(21):. PubMed ID: 36365405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics.
    Napper IE; Bakir A; Rowland SJ; Thompson RC
    Mar Pollut Bull; 2015 Oct; 99(1-2):178-85. PubMed ID: 26234612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microplastics and co-pollutant with ciprofloxacin affect interactions between free-floating macrophytes.
    Mao H; Yang H; Xu Z; Yang Y; Zhang X; Huang F; Wei L; Li Z
    Environ Pollut; 2023 Jan; 316(Pt 1):120546. PubMed ID: 36332704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An extensive characterization of various environmentally relevant microplastics - Material properties, leaching and ecotoxicity testing.
    Rozman U; Turk T; Skalar T; Zupančič M; Čelan Korošin N; Marinšek M; Olivero-Verbel J; Kalčíková G
    Sci Total Environ; 2021 Jun; 773():145576. PubMed ID: 33940734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abundance of plastic microbeads in Hong Kong coastal water.
    So WK; Chan K; Not C
    Mar Pollut Bull; 2018 Aug; 133():500-505. PubMed ID: 30041343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Percentage of microbeads in pelagic microplastics within Japanese coastal waters.
    Isobe A
    Mar Pollut Bull; 2016 Sep; 110(1):432-437. PubMed ID: 27297592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term interactions between microplastics and floating macrophyte Lemna minor: The potential for phytoremediation of microplastics in the aquatic environment.
    Rozman U; Jemec Kokalj A; Dolar A; Drobne D; Kalčíková G
    Sci Total Environ; 2022 Jul; 831():154866. PubMed ID: 35351508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of microbeads from personal care product contaminating the sea.
    Cheung PK; Fok L
    Mar Pollut Bull; 2016 Aug; 109(1):582-585. PubMed ID: 27237038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple endpoints of polyethylene microplastics toxicity in vascular plants of freshwater ecosystems: A study involving Salvinia auriculata (Salviniaceae).
    Gomes AR; Freitas ÍN; Luz TMD; Guimarães ATB; Araújo APDC; Kamaraj C; Rahman MM; Islam ARMT; Arias AH; Silva FBD; Karthi S; Cruz-Santiago O; Silva FG; Malafaia G
    J Hazard Mater; 2023 May; 450():131069. PubMed ID: 36857830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor.
    Amy-Sagers C; Reinhardt K; Larson DM
    Aquat Toxicol; 2017 Apr; 185():76-85. PubMed ID: 28192727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical and chemical effects of conventional microplastic glitter versus alternative glitter particles on a freshwater plant (Lemnaceae: Lemna minor).
    Boots B; Green DS; Olah-Kovacs B; De Falco F; Lupo E
    Ecotoxicol Environ Saf; 2023 Sep; 263():115291. PubMed ID: 37494737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively?
    Anagnosti L; Varvaresou A; Pavlou P; Protopapa E; Carayanni V
    Mar Pollut Bull; 2021 Jan; 162():111883. PubMed ID: 33310543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms.
    Kalčíková G; Skalar T; Marolt G; Jemec Kokalj A
    Water Res; 2020 May; 175():115644. PubMed ID: 32169692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All that glitters is litter? Ecological impacts of conventional versus biodegradable glitter in a freshwater habitat.
    Green DS; Jefferson M; Boots B; Stone L
    J Hazard Mater; 2021 Jan; 402():124070. PubMed ID: 33254837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates.
    Ziajahromi S; Kumar A; Neale PA; Leusch FDL
    Environ Pollut; 2018 May; 236():425-431. PubMed ID: 29414367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.