These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28784090)

  • 1. Repliscan: a tool for classifying replication timing regions.
    Zynda GJ; Song J; Concia L; Wear EE; Hanley-Bowdoin L; Thompson WF; Vaughn MW
    BMC Bioinformatics; 2017 Aug; 18(1):362. PubMed ID: 28784090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq.
    Marchal C; Sasaki T; Vera D; Wilson K; Sima J; Rivera-Mulia JC; Trevilla-García C; Nogues C; Nafie E; Gilbert DM
    Nat Protoc; 2018 May; 13(5):819-839. PubMed ID: 29599440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COPAR: A ChIP-Seq Optimal Peak Analyzer.
    Tang B; Wang X; Jin VX
    Biomed Res Int; 2017; 2017():5346793. PubMed ID: 28357402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Protocol for Genome-Wide Analysis of DNA Replication Timing in Intact Root Tips.
    Mickelson-Young L; Wear EE; Song J; Zynda GJ; Hanley-Bowdoin L; Thompson WF
    Methods Mol Biol; 2022; 2382():29-72. PubMed ID: 34705232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of REPLI-g Multiple Displacement Whole Genome Amplification (WGA) Techniques for Metagenomic Applications.
    Ahsanuddin S; Afshinnekoo E; Gandara J; Hakyemezoğlu M; Bezdan D; Minot S; Greenfield N; Mason CE
    J Biomol Tech; 2017 Apr; 28(1):46-55. PubMed ID: 28344519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Replication Timing in Single Mammalian Cells.
    Bartlett DA; Dileep V; Baslan T; Gilbert DM
    Curr Protoc; 2022 Jan; 2(1):e334. PubMed ID: 34986273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized Repli-seq: improved DNA replication timing analysis by next-generation sequencing.
    Rivera-Mulia JC; Trevilla-Garcia C; Martinez-Cifuentes S
    Chromosome Res; 2022 Dec; 30(4):401-414. PubMed ID: 35781769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MethGo: a comprehensive tool for analyzing whole-genome bisulfite sequencing data.
    Liao WW; Yen MR; Ju E; Hsu FM; Lam L; Chen PY
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S11. PubMed ID: 26680022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity.
    Du Q; Smith GC; Luu PL; Ferguson JM; Armstrong NJ; Caldon CE; Campbell EM; Nair SS; Zotenko E; Gould CM; Buckley M; Chia KM; Portman N; Lim E; Kaczorowski D; Chan CL; Barton K; Deveson IW; Smith MA; Powell JE; Skvortsova K; Stirzaker C; Achinger-Kawecka J; Clark SJ
    Cell Rep; 2021 Sep; 36(12):109722. PubMed ID: 34551299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seqinspector: position-based navigation through the ChIP-seq data landscape to identify gene expression regulators.
    Piechota M; Korostynski M; Ficek J; Tomski A; Przewlocki R
    BMC Bioinformatics; 2016 Feb; 17():85. PubMed ID: 26868127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NGS-QC Generator: A Quality Control System for ChIP-Seq and Related Deep Sequencing-Generated Datasets.
    Mendoza-Parra MA; Saleem MA; Blum M; Cholley PE; Gronemeyer H
    Methods Mol Biol; 2016; 1418():243-65. PubMed ID: 27008019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. dCATCH-Seq: improved sequencing of large continuous genomic targets with double-hybridization.
    Zhang Y; Song J; Day K; Absher D
    BMC Genomics; 2017 Oct; 18(1):811. PubMed ID: 29061109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Camptothecin-Induced Replication Stress Affects DNA Replication Profiling by E/L Repli-Seq.
    Hayakawa T; Suzuki R; Kagotani K; Okumura K; Takebayashi SI
    Cytogenet Genome Res; 2021; 161(8-9):437-444. PubMed ID: 34818230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
    Chen L; Wang C; Qin ZS; Wu H
    Bioinformatics; 2015 Jun; 31(12):1889-96. PubMed ID: 25682068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping protein-DNA interactions using ChIP-sequencing.
    Massie CE; Mills IG
    Methods Mol Biol; 2012; 809():157-73. PubMed ID: 22113275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-referenced genome assembly from epigenomic short-read data.
    Kaspi A; Ziemann M; Keating ST; Khurana I; Connor T; Spolding B; Cooper A; Lazarus R; Walder K; Zimmet P; El-Osta A
    Epigenetics; 2014 Oct; 9(10):1329-38. PubMed ID: 25437048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.
    Chen X; Jung JG; Shajahan-Haq AN; Clarke R; Shih IeM; Wang Y; Magnani L; Wang TL; Xuan J
    Nucleic Acids Res; 2016 Apr; 44(7):e65. PubMed ID: 26704972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VING: a software for visualization of deep sequencing signals.
    Descrimes M; Ben Zouari Y; Wery M; Legendre R; Gautheret D; Morillon A
    BMC Res Notes; 2015 Sep; 8():419. PubMed ID: 26346985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution Chromatin Immunoprecipitation: ChIP-Sequencing.
    Diaz RE; Sanchez A; Anton Le Berre V; Bouet JY
    Methods Mol Biol; 2017; 1624():61-73. PubMed ID: 28842876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.