BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28784507)

  • 1. Unique fluorescence and high-molecular weight characteristics of protein isolates from manuka honey (Leptospermum scoparium).
    Rückriemen J; Hohmann C; Hellwig M; Henle T
    Food Res Int; 2017 Sep; 99(Pt 1):469-475. PubMed ID: 28784507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.
    Hellwig M; Rückriemen J; Sandner D; Henle T
    J Agric Food Chem; 2017 May; 65(17):3532-3540. PubMed ID: 28415841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Quantitation of 2-Acetyl-1-pyrroline in Manuka Honey (Leptospermum scoparium).
    Rückriemen J; Schwarzenbolz U; Adam S; Henle T
    J Agric Food Chem; 2015 Sep; 63(38):8488-92. PubMed ID: 26365614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the formation of methylglyoxal from dihydroxyacetone in Manuka (Leptospermum scoparium) honey.
    Atrott J; Haberlau S; Henle T
    Carbohydr Res; 2012 Nov; 361():7-11. PubMed ID: 22960208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone.
    Rückriemen J; Klemm O; Henle T
    Food Chem; 2017 Sep; 230():540-546. PubMed ID: 28407946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of high pressure processing on the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka (Leptospermum scoparium) honey and models thereof.
    Grainger MN; Manley-Harris M; Fauzi NA; Farid MM
    Food Chem; 2014 Jun; 153():134-9. PubMed ID: 24491711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Protein-Bound Maillard Reaction Products during the Storage of Manuka Honey.
    Thierig M; Siegel E; Henle T
    J Agric Food Chem; 2023 Oct; 71(41):15261-15269. PubMed ID: 37796058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey.
    Adams CJ; Manley-Harris M; Molan PC
    Carbohydr Res; 2009 May; 344(8):1050-3. PubMed ID: 19368902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part I--Honey systems.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():484-91. PubMed ID: 26920322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels.
    Cokcetin NN; Pappalardo M; Campbell LT; Brooks P; Carter DA; Blair SE; Harry EJ
    PLoS One; 2016; 11(12):e0167780. PubMed ID: 28030589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand.
    Mavric E; Wittmann S; Barth G; Henle T
    Mol Nutr Food Res; 2008 Apr; 52(4):483-9. PubMed ID: 18210383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey.
    Adams CJ; Boult CH; Deadman BJ; Farr JM; Grainger MN; Manley-Harris M; Snow MJ
    Carbohydr Res; 2008 Mar; 343(4):651-9. PubMed ID: 18194804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of in vitro simulated gastroduodenal digestion on methylglyoxal concentration of Manuka ( Lectospermum scoparium ) honey.
    Daglia M; Ferrari D; Collina S; Curti V
    J Agric Food Chem; 2013 Mar; 61(9):2140-5. PubMed ID: 23406199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antistaphylococcal activity and metabolite profiling of manuka honey (Leptospermum scoparium L.) after in vitro simulated digestion.
    Mannina L; Sobolev AP; Coppo E; Di Lorenzo A; Nabavi SM; Marchese A; Daglia M
    Food Funct; 2016 Mar; 7(3):1664-70. PubMed ID: 26948514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence markers in some New Zealand honeys.
    Bong J; Loomes KM; Schlothauer RC; Stephens JM
    Food Chem; 2016 Feb; 192():1006-14. PubMed ID: 26304441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part III--A model to simulate the conversion.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():500-6. PubMed ID: 26920324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the Release of Methylglyoxal (MGO) from Honey and Honey-Based Formulations.
    Hossain ML; Lim LY; Hammer K; Hettiarachchi D; Locher C
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New approach: Chemical and fluorescence profiling of NZ honeys.
    Bong J; Loomes KM; Lin B; Stephens JM
    Food Chem; 2018 Nov; 267():355-367. PubMed ID: 29934178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of the antibacterial activity of commercial manuka and Leptospermum honeys from Australia and New Zealand with methylglyoxal content and other physicochemical characteristics.
    Green KJ; Lawag IL; Locher C; Hammer KA
    PLoS One; 2022; 17(7):e0272376. PubMed ID: 35901185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of the conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part II--Model systems.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():492-9. PubMed ID: 26920323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.