These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28784589)

  • 21. Overview of flavin-dependent enzymes.
    Pimviriyakul P; Chaiyen P
    Enzymes; 2020; 47():1-36. PubMed ID: 32951820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic control of dioxygen binding and functionalization of the flavin cofactor.
    Saleem-Batcha R; Stull F; Sanders JN; Moore BS; Palfey BA; Houk KN; Teufel R
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4909-4914. PubMed ID: 29686059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of flavins as catalyst for the remediation of halogenated compounds.
    Rathore D; Singh R; Geetanjali ; Srivastava R
    Appl Biochem Biotechnol; 2014 Oct; 174(3):1151-6. PubMed ID: 24861321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer.
    Visitsatthawong S; Chenprakhon P; Chaiyen P; Surawatanawong P
    J Am Chem Soc; 2015 Jul; 137(29):9363-74. PubMed ID: 26144862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products.
    Toplak M; Teufel R
    Biochemistry; 2022 Jan; 61(2):47-56. PubMed ID: 34962769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fixing Flavins: Hijacking a Flavin Transferase for Equipping Flavoproteins with a Covalent Flavin Cofactor.
    Tong Y; Kaya SG; Russo S; Rozeboom HJ; Wijma HJ; Fraaije MW
    J Am Chem Soc; 2023 Dec; 145(49):27140-27148. PubMed ID: 38048072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescent Mechanism-Based Probe for Aerobic Flavin-Dependent Enzyme Activity.
    McCulloch IP; La Clair JJ; Jaremko MJ; Burkart MD
    Chembiochem; 2016 Sep; 17(17):1598-601. PubMed ID: 27271974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate.
    Wicht DK
    Arch Biochem Biophys; 2016 Aug; 604():159-66. PubMed ID: 27392454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flavin dependent monooxygenases.
    Huijbers MM; Montersino S; Westphal AH; Tischler D; van Berkel WJ
    Arch Biochem Biophys; 2014 Feb; 544():2-17. PubMed ID: 24361254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase.
    Xiong J; Ellis HR
    Biochim Biophys Acta; 2012 Jul; 1824(7):898-906. PubMed ID: 22564769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism and Dynamics of Photodecarboxylation Catalyzed by Lactate Monooxygenase.
    Li X; Page CG; Zanetti-Polzi L; Kalra AP; Oblinsky DG; Daidone I; Hyster TK; Scholes GD
    J Am Chem Soc; 2023 Jun; 145(24):13232-13240. PubMed ID: 37289179
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the role of the active site residue Arg98 in the flavoprotein tryptophan 2-monooxygenase, a member of the L-amino oxidase family.
    Sobrado P; Fitzpatrick PF
    Biochemistry; 2003 Dec; 42(47):13826-32. PubMed ID: 14636049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytically important flavin linked through a phosphoester bond in a eukaryotic fumarate reductase.
    Serebryakova MV; Bertsova YV; Sokolov SS; Kolesnikov AA; Baykov AA; Bogachev AV
    Biochimie; 2018 Jun; 149():34-40. PubMed ID: 29621574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural methods for probing the interaction of flavoenzymes with dioxygen and its surrogates.
    Saleem-Batcha R; Teufel R
    Methods Enzymol; 2019; 620():349-363. PubMed ID: 31072493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unifying concepts in flavin-dependent catalysis.
    Vervoort J; Rietjens IM
    Biochem Soc Trans; 1996 Feb; 24(1):127-30. PubMed ID: 8674612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sweating the assets of flavin cofactors: new insight of chemical versatility from knowledge of structure and mechanism.
    Leys D; Scrutton NS
    Curr Opin Struct Biol; 2016 Dec; 41():19-26. PubMed ID: 27266331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple functionalities of reduced flavin in the non-redox reaction catalyzed by UDP-galactopyranose mutase.
    Sobrado P; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():59-65. PubMed ID: 28652025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
    Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P
    Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Flavin-Dependent Monooxygenase Mediates Divergent Oxidation of Rifamycin.
    Zhou Q; Peng SY; Zhang K; Luo GC; Han L; He QL; Tang GL
    Org Lett; 2021 Mar; 23(6):2342-2346. PubMed ID: 33683897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic properties of L-lactate oxidase reconstituted with modified flavins.
    Aki K; Yorita K; Massey V
    Biofactors; 2000; 11(1-2):115-6. PubMed ID: 10705979
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.