BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 28785007)

  • 1. Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries.
    Ong SH; Li Y; Koike-Yusa H; Yusa K
    Sci Rep; 2017 Aug; 7(1):7384. PubMed ID: 28785007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens.
    Hart T; Tong AHY; Chan K; Van Leeuwen J; Seetharaman A; Aregger M; Chandrashekhar M; Hustedt N; Seth S; Noonan A; Habsid A; Sizova O; Nedyalkova L; Climie R; Tworzyanski L; Lawson K; Sartori MA; Alibeh S; Tieu D; Masud S; Mero P; Weiss A; Brown KR; Usaj M; Billmann M; Rahman M; Constanzo M; Myers CL; Andrews BJ; Boone C; Durocher D; Moffat J
    G3 (Bethesda); 2017 Aug; 7(8):2719-2727. PubMed ID: 28655737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR Guide RNA Library Screens in Human Induced Pluripotent Stem Cells.
    Zhou Y; Fu Q; Shi H; Zhou G
    Methods Mol Biol; 2022; 2549():233-257. PubMed ID: 35347694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Screening Approach for the Dissection of Cellular Regulatory Networks of NF-κB Using Arrayed CRISPR gRNA Libraries.
    O'Shea P; Wildenhain J; Leveridge M; Revankar C; Yang JP; Bradley J; Firth M; Pilling J; Piper D; Chesnut J; Isherwood B
    SLAS Discov; 2020 Jul; 25(6):618-633. PubMed ID: 32476557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Universal Protocol for Large-scale gRNA Library Production from any DNA Source.
    Köferle A; Stricker SH
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
    Aregger M; Chandrashekhar M; Tong AHY; Chan K; Moffat J
    Methods Mol Biol; 2019; 1869():169-188. PubMed ID: 30324523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide CRISPR-Cas9 screening in mammalian cells.
    Yu JSL; Yusa K
    Methods; 2019 Jul; 164-165():29-35. PubMed ID: 31034882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR guide RNA design for research applications.
    Mohr SE; Hu Y; Ewen-Campen B; Housden BE; Viswanatha R; Perrimon N
    FEBS J; 2016 Sep; 283(17):3232-8. PubMed ID: 27276584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries.
    Vidigal JA; Ventura A
    Nat Commun; 2015 Aug; 6():8083. PubMed ID: 26278926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening.
    Köferle A; Worf K; Breunig C; Baumann V; Herrero J; Wiesbeck M; Hutter LH; Götz M; Fuchs C; Beck S; Stricker SH
    BMC Genomics; 2016 Nov; 17(1):917. PubMed ID: 27842490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9.
    Park J; Kim JS; Bae S
    Bioinformatics; 2016 Jul; 32(13):2017-23. PubMed ID: 27153724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Off-Spotter": very fast and exhaustive enumeration of genomic lookalikes for designing CRISPR/Cas guide RNAs.
    Pliatsika V; Rigoutsos I
    Biol Direct; 2015 Jan; 10():4. PubMed ID: 25630343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Drug Resistance Mechanisms Using Genome-Wide CRISPR-Cas9 Screens.
    MacLeod G; Rajakulendran N; Angers S
    Methods Mol Biol; 2022; 2535():141-156. PubMed ID: 35867229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guide RNA library-based CRISPR screens in plants: opportunities and challenges.
    Pan C; Li G; Bandyopadhyay A; Qi Y
    Curr Opin Biotechnol; 2023 Feb; 79():102883. PubMed ID: 36603502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Meta-Analysis of gRNA Library Screens Enables an Improved Understanding of the Impact of gRNA Folding and Structural Stability on CRISPR-Cas9 Activity.
    Moreb EA; Lynch MD
    CRISPR J; 2022 Feb; 5(1):146-154. PubMed ID: 35191752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design.
    Smith JD; Suresh S; Schlecht U; Wu M; Wagih O; Peltz G; Davis RW; Steinmetz LM; Parts L; St Onge RP
    Genome Biol; 2016 Mar; 17():45. PubMed ID: 26956608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated grna gene knockout leads to neurodevelopmental defects and motor behavior changes in zebrafish.
    Zhu J; Xu H; Song H; Li X; Wang N; Zhao J; Zheng X; Kim KY; Zhang H; Mao Q; Xia H
    J Neurochem; 2021 May; 157(3):520-531. PubMed ID: 33480022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism.
    Arakawa H
    Sci Adv; 2016 Aug; 2(8):e1600699. PubMed ID: 27574704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.