These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28785048)

  • 41. What can quantum optics say about computational complexity theory?
    Rahimi-Keshari S; Lund AP; Ralph TC
    Phys Rev Lett; 2015 Feb; 114(6):060501. PubMed ID: 25723196
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Statistical Analysis for Collision-free Boson Sampling.
    Huang HL; Zhong HS; Li T; Li FG; Fu XQ; Zhang S; Wang X; Bao WS
    Sci Rep; 2017 Nov; 7(1):15265. PubMed ID: 29127408
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect: the Qx band of porphyrin as a case study.
    Santoro F; Lami A; Improta R; Bloino J; Barone V
    J Chem Phys; 2008 Jun; 128(22):224311. PubMed ID: 18554017
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantum critical point of spin-boson model and infrared catastrophe in bosonic bath.
    Zheng H; Lü Z
    J Chem Phys; 2013 May; 138(17):174117. PubMed ID: 23656124
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experimental Boson Sampling Enabling Cryptographic One-Way Function.
    Wang XW; Zhou WH; Fu YX; Gao J; Lu YH; Chang YJ; Qiao LF; Ren RJ; Jiang ZK; Jiao ZQ; Nikolopoulos GM; Jin XM
    Phys Rev Lett; 2023 Feb; 130(6):060802. PubMed ID: 36827576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution.
    Santoro F; Lami A; Improta R; Barone V
    J Chem Phys; 2007 May; 126(18):184102. PubMed ID: 17508787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proposal for Microwave Boson Sampling.
    Peropadre B; Guerreschi GG; Huh J; Aspuru-Guzik A
    Phys Rev Lett; 2016 Sep; 117(14):140505. PubMed ID: 27740779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. From Davydov solitons to decoherence-free subspaces: self-consistent propagation of coherent-product states.
    Gheorghiu-Svirschevski S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051907. PubMed ID: 11735968
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stringent and efficient assessment of boson-sampling devices.
    Tichy MC; Mayer K; Buchleitner A; Mølmer K
    Phys Rev Lett; 2014 Jul; 113(2):020502. PubMed ID: 25062152
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water.
    Zuehlsdorff TJ; Napoli JA; Milanese JM; Markland TE; Isborn CM
    J Chem Phys; 2018 Jul; 149(2):024107. PubMed ID: 30007372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vibronic Origin of the Q
    Leiger K; Linnanto JM; Freiberg A
    J Phys Chem Lett; 2017 Sep; 8(17):4231-4235. PubMed ID: 28820595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Algebraic approach to electronic spectroscopy and dynamics.
    Toutounji M
    J Chem Phys; 2008 Apr; 128(16):164103. PubMed ID: 18447417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The characterization of the high-frequency vibronic contributions to the 77 K emission spectra of ruthenium-am(m)ine-bipyridyl complexes, their attenuation with decreasing energy gaps, and the implications of strong electronic coupling for inverted-region electron transfer.
    Xie P; Chen YJ; Uddin MJ; Endicott JF
    J Phys Chem A; 2005 Jun; 109(21):4671-89. PubMed ID: 16833808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exact sampling hardness of Ising spin models.
    Fefferman B; Foss-Feig M; Gorshkov AV
    Phys Rev A (Coll Park); 2017; 96():. PubMed ID: 31093588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time-Bin-Encoded Boson Sampling with a Single-Photon Device.
    He Y; Ding X; Su ZE; Huang HL; Qin J; Wang C; Unsleber S; Chen C; Wang H; He YM; Wang XL; Zhang WJ; Chen SJ; Schneider C; Kamp M; You LX; Wang Z; Höfling S; Lu CY; Pan JW
    Phys Rev Lett; 2017 May; 118(19):190501. PubMed ID: 28548532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient Classical Algorithm for Boson Sampling with Partially Distinguishable Photons.
    Renema JJ; Menssen A; Clements WR; Triginer G; Kolthammer WS; Walmsley IA
    Phys Rev Lett; 2018 Jun; 120(22):220502. PubMed ID: 29906153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental studies of vibrational modes in a two-dimensional amorphous solid.
    Zhang L; Zheng J; Wang Y; Zhang L; Jin Z; Hong L; Wang Y; Zhang J
    Nat Commun; 2017 Jul; 8(1):67. PubMed ID: 28694525
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computation of the S
    Bonfanti M; Petersen J; Eisenbrandt P; Burghardt I; Pollak E
    J Chem Theory Comput; 2018 Oct; 14(10):5310-5323. PubMed ID: 30141930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resources for Bosonic Quantum Computational Advantage.
    Chabaud U; Walschaers M
    Phys Rev Lett; 2023 Mar; 130(9):090602. PubMed ID: 36930938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Symmetric double-well potential model and its application to vibronic spectra: studies of inversion modes of ammonia and nitrogen-vacancy defect centers in diamond.
    Lin CK; Chang HC; Lin SH
    J Phys Chem A; 2007 Sep; 111(38):9347-54. PubMed ID: 17725334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.