These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 28785308)
1. Three-dimensional (3D) evaluation of liquid distribution in shake flask using an optical fluorescence technique. Azizan A; Büchs J J Biol Eng; 2017; 11():28. PubMed ID: 28785308 [TBL] [Abstract][Full Text] [Related]
2. Reassessing the out-of-phase phenomenon in shake flasks by evaluating the angle-dependent liquid distribution relative to the direction of the centrifugal acceleration. Azizan A; Sieben M; Wandrey G; Büchs J Biotechnol Bioeng; 2019 Nov; 116(11):2983-2995. PubMed ID: 31350917 [TBL] [Abstract][Full Text] [Related]
3. Validation of computational fluid dynamics of shake flask experiments at moderate viscosity by liquid distributions and volumetric power inputs. Dinter C; Gumprecht A; Menze MA; Azizan A; Niehoff PJ; Hansen S; Büchs J Sci Rep; 2024 Feb; 14(1):3658. PubMed ID: 38351095 [TBL] [Abstract][Full Text] [Related]
4. Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Zhang H; Williams-Dalson W; Keshavarz-Moore E; Shamlou PA Biotechnol Appl Biochem; 2005 Feb; 41(Pt 1):1-8. PubMed ID: 15310285 [TBL] [Abstract][Full Text] [Related]
5. Combined dissolved oxygen tension and online viscosity measurements in shake flask cultivations via infrared fluorescent oxygen-sensitive nanoparticles. Ladner T; Flitsch D; Lukacs M; Sieben M; Büchs J Biotechnol Bioeng; 2019 Dec; 116(12):3215-3227. PubMed ID: 31429921 [TBL] [Abstract][Full Text] [Related]
7. Potential errors in conventional DOT measurement techniques in shake flasks and verification using a rotating flexitube optical sensor. Hansen S; Kensy F; Käser A; Büchs J BMC Biotechnol; 2011 May; 11():49. PubMed ID: 21569304 [TBL] [Abstract][Full Text] [Related]
8. Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity. Giese H; Azizan A; Kümmel A; Liao A; Peter CP; Fonseca JA; Hermann R; Duarte TM; Büchs J Biotechnol Bioeng; 2014 Feb; 111(2):295-308. PubMed ID: 23904288 [TBL] [Abstract][Full Text] [Related]
9. Improvement and scale-down of a Trichoderma reesei shake flask protocol to microtiter plates enables high-throughput screening. Giese H; Kruithof P; Meier K; Sieben M; Antonov E; Hommes RW; Büchs J J Biosci Bioeng; 2014 Dec; 118(6):702-9. PubMed ID: 24982019 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of the gas-liquid mass transfer in shaking bioreactors. Maier U; Büchs J Biochem Eng J; 2001 Mar; 7(2):99-106. PubMed ID: 11173296 [TBL] [Abstract][Full Text] [Related]
11. Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Büchs J; Maier U; Milbradt C; Zoels B Biotechnol Bioeng; 2000 Jun; 68(6):594-601. PubMed ID: 10799984 [TBL] [Abstract][Full Text] [Related]
12. Real-time monitoring of shake flask fermentation and off gas using triple disposable noninvasive optical sensors. Ge X; Rao G Biotechnol Prog; 2012; 28(3):872-7. PubMed ID: 22323391 [TBL] [Abstract][Full Text] [Related]
13. Implementation of Perforated Concentric Ring Walls Considerably Improves Gas-Liquid Mass Transfer of Shaken Bioreactors. Hansen S; Gumprecht A; Micheel L; Hennemann HG; Enzmann F; Blümke W Front Bioeng Biotechnol; 2022; 10():894295. PubMed ID: 35646878 [TBL] [Abstract][Full Text] [Related]
14. A comprehensive comparison of mixing and mass transfer in shake flasks and their relationship with MAb productivity of CHO cells. Pérez-Rodriguez S; Reynoso-Cereceda GI; Valdez-Cruz NA; Trujillo-Roldán MA Bioprocess Biosyst Eng; 2022 Jun; 45(6):1033-1045. PubMed ID: 35347387 [TBL] [Abstract][Full Text] [Related]
15. Power consumption in shaking flasks on rotary shaking machines: I. Power consumption measurement in unbaffled flasks at low liquid viscosity. Büchs J; Maier U; Milbradt C; Zoels B Biotechnol Bioeng; 2000 Jun; 68(6):589-93. PubMed ID: 10799983 [TBL] [Abstract][Full Text] [Related]
16. Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Losen M; Frölich B; Pohl M; Büchs J Biotechnol Prog; 2004; 20(4):1062-8. PubMed ID: 15296430 [TBL] [Abstract][Full Text] [Related]
17. Practices of shake-flask culture and advances in monitoring CO Takahashi M; Aoyagi H Appl Microbiol Biotechnol; 2018 May; 102(10):4279-4289. PubMed ID: 29582104 [TBL] [Abstract][Full Text] [Related]
18. Quantification and modeling of macroparticle-induced mechanical stress for varying shake flask cultivation conditions. Schrader M; Schrinner K; Polomsky L; Ivanov D; Kampen I; Schilde C; Krull R; Kwade A Front Bioeng Biotechnol; 2023; 11():1254136. PubMed ID: 37731767 [TBL] [Abstract][Full Text] [Related]
19. Development of a circulation direct sampling and monitoring system for O Takahashi M; Sawada Y; Aoyagi H AMB Express; 2017 Aug; 7(1):163. PubMed ID: 28831757 [TBL] [Abstract][Full Text] [Related]
20. Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth. Kensy F; Zimmermann HF; Knabben I; Anderlei T; Trauthwein H; Dingerdissen U; Büchs J Biotechnol Bioeng; 2005 Mar; 89(6):698-708. PubMed ID: 15696519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]