These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 28785382)
1. Rat adipose-derived mesenchymal stem cells aging reduction by zinc sulfate under extremely low frequency electromagnetic field exposure is associated with increased telomerase reverse transcriptase gene expression. Fathi E; Farahzadi R; Rahbarghazi R; Samadi Kafil H; Yolmeh R Vet Res Forum; 2017; 8(2):89-96. PubMed ID: 28785382 [TBL] [Abstract][Full Text] [Related]
2. Zinc Sulphate Mediates the Stimulation of Cell Proliferation of Rat Adipose Tissue-Derived Mesenchymal Stem Cells Under High Intensity of EMF Exposure. Fathi E; Farahzadi R Biol Trace Elem Res; 2018 Aug; 184(2):529-535. PubMed ID: 29189996 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/β-catenin signaling pathways. Fathi E; Farahzadi R PLoS One; 2017; 12(3):e0173877. PubMed ID: 28339498 [TBL] [Abstract][Full Text] [Related]
4. Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. Seong Y; Moon J; Kim J Life Sci; 2014 Apr; 102(1):16-27. PubMed ID: 24603130 [TBL] [Abstract][Full Text] [Related]
5. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Kim HJ; Jung J; Park JH; Kim JH; Ko KN; Kim CW Exp Biol Med (Maywood); 2013 Aug; 238(8):923-31. PubMed ID: 23970408 [TBL] [Abstract][Full Text] [Related]
6. Zinc sulfate contributes to promote telomere length extension via increasing telomerase gene expression, telomerase activity and change in the TERT gene promoter CpG island methylation status of human adipose-derived mesenchymal stem cells. Farahzadi R; Fathi E; Mesbah-Namin SA; Zarghami N PLoS One; 2017; 12(11):e0188052. PubMed ID: 29145503 [TBL] [Abstract][Full Text] [Related]
7. Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Li SS; Zhang ZY; Yang CJ; Lian HY; Cai P Mutat Res Genet Toxicol Environ Mutagen; 2013 Dec; 758(1-2):95-103. PubMed ID: 24157427 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of miR-26b-5p regulates the cell cycle by targeting CCND2 in GC-2 cells under exposure to extremely low frequency electromagnetic fields. Liu Y; Liu WB; Liu KJ; Ao L; Cao J; Zhong JL; Liu JY Cell Cycle; 2016; 15(3):357-67. PubMed ID: 26637059 [TBL] [Abstract][Full Text] [Related]
9. 50 Hz electromagnetic field exposure promotes proliferation and cytokine production of bone marrow mesenchymal stem cells. Fan W; Qian F; Ma Q; Zhang P; Chen T; Chen C; Zhang Y; Deng P; Zhou Z; Yu Z Int J Clin Exp Med; 2015; 8(5):7394-404. PubMed ID: 26221281 [TBL] [Abstract][Full Text] [Related]
10. Extremely low-frequency electromagnetic field influences the survival and proliferation effect of human adipose derived stem cells. Razavi S; Salimi M; Shahbazi-Gahrouei D; Karbasi S; Kermani S Adv Biomed Res; 2014; 3():25. PubMed ID: 24592372 [TBL] [Abstract][Full Text] [Related]
11. Immune response of mollusk Onchidium struma to extremely low-frequency electromagnetic fields (ELF-EMF, 50 Hz) exposure based on immune-related enzyme activity and De novo transcriptome analysis. Zhang M; Wang J; Sun Q; Zhang H; Chen P; Li Q; Wang Y; Qiao G Fish Shellfish Immunol; 2020 Mar; 98():574-584. PubMed ID: 32014586 [TBL] [Abstract][Full Text] [Related]
12. Electromagnetic field as a possible inhibitor of tumor invasion by declining E-cadherin/N-cadherin switching in triple negative breast cancer. Moori M; Norouzian D; Yaghmaei P; Farahmand L Electromagn Biol Med; 2024 Oct; 43(4):236-245. PubMed ID: 39045872 [TBL] [Abstract][Full Text] [Related]
13. Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E Sun Y; Shi Z; Wang Y; Tang C; Liao Y; Yang C; Cai P Int J Radiat Biol; 2018 Dec; 94(12):1159-1166. PubMed ID: 30307357 [No Abstract] [Full Text] [Related]
14. In Vitro Developmental Neurotoxicity Following Chronic Exposure to 50 Hz Extremely Low-Frequency Electromagnetic Fields in Primary Rat Cortical Cultures. de Groot MW; van Kleef RG; de Groot A; Westerink RH Toxicol Sci; 2016 Feb; 149(2):433-40. PubMed ID: 26572663 [TBL] [Abstract][Full Text] [Related]
15. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1. Ma Q; Chen C; Deng P; Zhu G; Lin M; Zhang L; Xu S; He M; Lu Y; Duan W; Pi H; Cao Z; Pei L; Li M; Liu C; Zhang Y; Zhong M; Zhou Z; Yu Z PLoS One; 2016; 11(3):e0150923. PubMed ID: 26950212 [TBL] [Abstract][Full Text] [Related]
16. Effect of extremely low frequency electromagnetic field on MAP2 and Nestin gene expression of hair follicle dermal papilla cells. Moraveji M; Haghighipour N; Keshvari H; Nourizadeh Abbariki T; Shokrgozar MA; Amanzadeh A Int J Artif Organs; 2016 Aug; 39(6):294-9. PubMed ID: 27515859 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Duan W; Liu C; Zhang L; He M; Xu S; Chen C; Pi H; Gao P; Zhang Y; Zhong M; Yu Z; Zhou Z Radiat Res; 2015 Mar; 183(3):305-14. PubMed ID: 25688995 [TBL] [Abstract][Full Text] [Related]
18. Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer. Wang MH; Chen KW; Ni DX; Fang HJ; Jang LS; Chen CH Electromagn Biol Med; 2021 Jul; 40(3):384-392. PubMed ID: 33632057 [TBL] [Abstract][Full Text] [Related]
19. The effect of electromagnetic fields on survival and proliferation rate of dental pulp stem cells. Samiei M; Aghazadeh Z; Abdolahinia ED; Vahdati A; Daneshvar S; Noghani A Acta Odontol Scand; 2020 Oct; 78(7):494-500. PubMed ID: 32191156 [No Abstract] [Full Text] [Related]
20. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release. Liu DD; Ren Z; Yang G; Zhao QR; Mei YA J Cell Mol Med; 2014 Jun; 18(6):1060-70. PubMed ID: 24548607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]