These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28785754)

  • 1. Increased thermal stability of activated N
    Liu T; Temprano I; Jenkins SJ
    Phys Chem Chem Phys; 2017 Aug; 19(32):21848-21855. PubMed ID: 28785754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer-Tropsch synthesis: a quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study.
    Graf B; Muhler M
    Phys Chem Chem Phys; 2011 Mar; 13(9):3701-10. PubMed ID: 21170422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-dissociative activation of chemisorbed dinitrogen on Ni{110} by co-adsorbed lithium.
    Liu T; Temprano I; Jenkins SJ; King DA
    J Chem Phys; 2013 Nov; 139(18):184708. PubMed ID: 24320292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral modification of platinum: ab initio study of the effect of hydrogen coadsorption on stability and geometry of adsorbed cinchona alkaloids.
    Hahn KR; Seitsonen AP; Baiker A
    Phys Chem Chem Phys; 2015 Nov; 17(41):27615-29. PubMed ID: 26426825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFT-D3 study of H
    Zeinalipour-Yazdi CD; Hargreaves JSJ; Laassiri S; Catlow CRA
    Phys Chem Chem Phys; 2017 May; 19(19):11968-11974. PubMed ID: 28440821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Non-dissociative Activation of Dinitrogen to Ammonia over Lithium-Promoted Ruthenium Nanoparticles at Low Pressure.
    Zheng J; Liao F; Wu S; Jones G; Chen TY; Fellowes J; Sudmeier T; McPherson IJ; Wilkinson I; Tsang SCE
    Angew Chem Int Ed Engl; 2019 Nov; 58(48):17335-17341. PubMed ID: 31560158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfaces of ionic liquids and transition metal surfaces-adsorption, growth, and thermal reactions of ultrathin [C1C1Im][Tf2N] films on metallic and oxidised Ni(111) surfaces.
    Cremer T; Wibmer L; Calderón SK; Deyko A; Maier F; Steinrück HP
    Phys Chem Chem Phys; 2012 Apr; 14(15):5153-63. PubMed ID: 22382789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A density functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: I. Molecular and dissociative adsorption.
    Karhánek D; Bučko T; Hafner J
    J Phys Condens Matter; 2010 Jul; 22(26):265005. PubMed ID: 21386471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru.
    Saha D; Deng S
    Langmuir; 2009 Nov; 25(21):12550-60. PubMed ID: 19627075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkali-promoted CO dissociation on Cu(111) and Ni(111) at room temperature.
    Politano A; Formoso V; Chiarello G
    J Chem Phys; 2008 Oct; 129(16):164703. PubMed ID: 19045294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of methanol from CO
    Tang Q; Shen Z; Huang L; He T; Adidharma H; Russell AG; Fan M
    Phys Chem Chem Phys; 2017 Jul; 19(28):18539-18555. PubMed ID: 28685170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking the chemistry of unsaturated C3H3 groups adsorbed on a silver surface: propargyl-allenyl-acetylide triple bond migration, self-hydrogenation, and carbon-carbon bond formation.
    Kung H; Wu SM; Wu YJ; Yang YW; Chiang CM
    J Am Chem Soc; 2008 Aug; 130(31):10263-73. PubMed ID: 18613681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface chemistry of CN bond formation from carbon and nitrogen atoms on Pt(111).
    Herceg E; Trenary M
    J Phys Chem B; 2005 Sep; 109(37):17560-6. PubMed ID: 16853246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of N
    Degaga GD; Trought M; Nemsak S; Crumlin EJ; Seel M; Pandey R; Perrine KA
    J Chem Phys; 2020 Feb; 152(5):054717. PubMed ID: 32035447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption States of N
    Rivera Rocabado DS; Noguchi TG; Hayashi S; Maeda N; Yamauchi M; Ishimoto T
    ACS Nano; 2021 Dec; 15(12):20079-20086. PubMed ID: 34860010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds.
    Bandosz TJ; Petit C
    J Colloid Interface Sci; 2009 Oct; 338(2):329-45. PubMed ID: 19615690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the high activity of a nanostructured catalyst obtained by a deposit of Pd on Ni: first principle calculations.
    Filhol JS; Simon D; Sautet P
    J Am Chem Soc; 2004 Mar; 126(10):3228-33. PubMed ID: 15012152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex.
    Pool JA; Lobkovsky E; Chirik PJ
    Nature; 2004 Feb; 427(6974):527-30. PubMed ID: 14765191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen Molecule Adsorption on Cationic Tantalum Clusters and Rhodium Clusters and Desorption from Their Nitride Clusters Studied by Thermal Desorption Spectrometry.
    Mafuné F; Tawaraya Y; Kudoh S
    J Phys Chem A; 2016 Jun; 120(24):4089-95. PubMed ID: 27276438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient Carbon-Neutral Ammonia Generation via a Cyclic Microwave Plasma Process.
    Brown S; Ahmat Ibrahim S; Robinson BR; Caiola A; Tiwari S; Wang Y; Bhattacharyya D; Che F; Hu J
    ACS Appl Mater Interfaces; 2023 May; 15(19):23255-23264. PubMed ID: 37134186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.