BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28785960)

  • 1. Spine labeling in MRI via regularized distribution matching.
    Hojjat SP; Ayed I; Garvin GJ; Punithakumar K
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1911-1922. PubMed ID: 28785960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spine labeling in axial magnetic resonance imaging via integral kernels.
    Miles B; Ben Ayed I; Hojjat SP; Wang MH; Li S; Fenster A; Garvin GJ
    Comput Med Imaging Graph; 2016 Dec; 54():27-34. PubMed ID: 27743641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automatic cross-modality localization and labeling of vertebral bodies and intervertebral discs in 3D spinal images.
    Wimmer M; Major D; Novikov AA; Bühler K
    Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1591-1603. PubMed ID: 30027302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated detection of spinal centrelines, vertebral bodies and intervertebral discs in CT and MR images of lumbar spine.
    Stern D; Likar B; Pernus F; Vrtovec T
    Phys Med Biol; 2010 Jan; 55(1):247-64. PubMed ID: 20009200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertebral body segmentation in MRI via convex relaxation and distribution matching.
    Ben Ayed I; Punithakumar K; Minhas R; Joshi KR; Garvin GJ
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):520-7. PubMed ID: 23285591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left ventricle segmentation in MRI via convex relaxed distribution matching.
    Nambakhsh CM; Yuan J; Punithakumar K; Goela A; Rajchl M; Peters TM; Ayed IB
    Med Image Anal; 2013 Dec; 17(8):1010-24. PubMed ID: 23851075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization.
    Gros C; De Leener B; Dupont SM; Martin AR; Fehlings MG; Bakshi R; Tummala S; Auclair V; McLaren DG; Callot V; Cohen-Adad J; Sdika M
    Med Image Anal; 2018 Feb; 44():215-227. PubMed ID: 29288983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lumbar spine segmentation in MR images: a dataset and a public benchmark.
    van der Graaf JW; van Hooff ML; Buckens CFM; Rutten M; van Susante JLC; Kroeze RJ; de Kleuver M; van Ginneken B; Lessmann N
    Sci Data; 2024 Mar; 11(1):264. PubMed ID: 38431692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fat-suppressed MR Imaging of the Spine for Metal Artifact Reduction at 3T: Comparison of STIR and Slice Encoding for Metal Artifact Correction Fat-suppressed T
    Lee YH; Hahn S; Kim E; Suh JS
    Magn Reson Med Sci; 2016 Oct; 15(4):371-378. PubMed ID: 26902679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of intervertebral displacement with a novel MRI-based modeling technique: Assessing measurement bias and reliability with a porcine spine model.
    Mahato NK; Montuelle S; Goubeaux C; Cotton J; Williams S; Thomas J; Clark BC
    Magn Reson Imaging; 2017 May; 38():77-86. PubMed ID: 28027908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine.
    Michopoulou SK; Costaridou L; Panagiotopoulos E; Speller R; Panayiotakis G; Todd-Pokropek A
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2225-31. PubMed ID: 19369148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings.
    Tang R; Gungor C; Sesek RF; Foreman KB; Gallagher S; Davis GA
    Eur Spine J; 2016 Dec; 25(12):4116-4131. PubMed ID: 26873104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models.
    Kadoury S; Cheriet F; Labelle H
    IEEE Trans Med Imaging; 2009 Sep; 28(9):1422-35. PubMed ID: 19336299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Multisegmental image fusion of the spine].
    Kaminsky J; Rodt T; Zajaczek J; Donnerstag F; Zumkeller M
    Biomed Tech (Berl); 2004 Mar; 49(3):49-55. PubMed ID: 15106898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectiveness of a Rapid Lumbar Spine MRI Protocol Using 3D T2-Weighted SPACE Imaging Versus a Standard Protocol for Evaluation of Degenerative Changes of the Lumbar Spine.
    Sayah A; Jay AK; Toaff JS; Makariou EV; Berkowitz F
    AJR Am J Roentgenol; 2016 Sep; 207(3):614-20. PubMed ID: 27275868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous localization of lumbar vertebrae and intervertebral discs with SVM-based MRF.
    Oktay AB; Akgul YS
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2375-83. PubMed ID: 23559025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI.
    Daenzer S; Freitag S; von Sachsen S; Steinke H; Groll M; Meixensberger J; Leimert M
    Med Phys; 2014 Aug; 41(8):082305. PubMed ID: 25086554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvements in lumbar spine MRI at 3 T using parallel transmission.
    Filippi CG; Carlson M; Johnson JM; Burbank HN; Alsofrom GF; Andrews T
    AJR Am J Roentgenol; 2012 Oct; 199(4):861-7. PubMed ID: 22997379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.
    Wognum S; Bondar L; Zolnay AG; Chai X; Hulshof MC; Hoogeman MS; Bel A
    Med Phys; 2013 Feb; 40(2):021702. PubMed ID: 23387725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FSE T2-weighted two-point Dixon technique for fat suppression in the lumbar spine: comparison with SPAIR technique.
    Lee S; Choi DS; Shin HS; Baek HJ; Choi HC; Park SE
    Diagn Interv Radiol; 2018; 24(3):175-180. PubMed ID: 29770772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.