These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 28785999)
1. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part I: Low rate loading. Wade KR; Schollum ML; Robertson PA; Thambyah A; Broom ND Eur Spine J; 2017 Oct; 26(10):2616-2628. PubMed ID: 28785999 [TBL] [Abstract][Full Text] [Related]
2. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part II: high rate or 'surprise' loading. Shan Z; Wade KR; Schollum ML; Robertson PA; Thambyah A; Broom ND Eur Spine J; 2017 Oct; 26(10):2629-2641. PubMed ID: 28791480 [TBL] [Abstract][Full Text] [Related]
3. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Wade KR; Robertson PA; Thambyah A; Broom ND Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692 [TBL] [Abstract][Full Text] [Related]
4. The Influence of Concordant Complex Posture and Loading Rate on Motion Segment Failure: A Mechanical and Microstructural Investigation. Schollum ML; Wade KR; Shan Z; Robertson PA; Thambyah A; Broom ND Spine (Phila Pa 1976); 2018 Oct; 43(19):E1116-E1126. PubMed ID: 29579012 [TBL] [Abstract][Full Text] [Related]
5. "Surprise" Loading in Flexion Increases the Risk of Disc Herniation Due to Annulus-Endplate Junction Failure: A Mechanical and Microstructural Investigation. Wade KR; Robertson PA; Thambyah A; Broom ND Spine (Phila Pa 1976); 2015 Jun; 40(12):891-901. PubMed ID: 25803222 [TBL] [Abstract][Full Text] [Related]
6. A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation. Wilke HJ; Kienle A; Maile S; Rasche V; Berger-Roscher N Eur Spine J; 2016 May; 25(5):1363-1372. PubMed ID: 26838335 [TBL] [Abstract][Full Text] [Related]
7. The morphology of acute disc herniation: a clinically relevant model defining the role of flexion. Veres SP; Robertson PA; Broom ND Spine (Phila Pa 1976); 2009 Oct; 34(21):2288-96. PubMed ID: 19934808 [TBL] [Abstract][Full Text] [Related]
8. Disc wall structural abnormalities can act as initiation sites for herniation. Wade K; Berger-Roscher N; Rasche V; Wilke H Eur Cell Mater; 2020 Nov; 40():227-238. PubMed ID: 33227141 [TBL] [Abstract][Full Text] [Related]
9. Sagittal Alignment With Downward Slope of the Lower Lumbar Motion Segment Influences Its Modes of Failure in Direct Compression: A Mechanical and Microstructural Investigation. Sapiee NH; Thambyah A; Robertson PA; Broom ND Spine (Phila Pa 1976); 2019 Aug; 44(16):1118-1128. PubMed ID: 30817724 [TBL] [Abstract][Full Text] [Related]
10. Posterolateral Disc Prolapse in Flexion Initiated by Lateral Inner Annular Failure: An Investigation of the Herniation Pathway. van Heeswijk VM; Thambyah A; Robertson PA; Broom ND Spine (Phila Pa 1976); 2017 Nov; 42(21):1604-1613. PubMed ID: 28368980 [TBL] [Abstract][Full Text] [Related]
11. Influence of Complex Loading Conditions on Intervertebral Disc Failure. Berger-Roscher N; Casaroli G; Rasche V; Villa T; Galbusera F; Wilke HJ Spine (Phila Pa 1976); 2017 Jan; 42(2):E78-E85. PubMed ID: 27187053 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of Failure Following Simulated Repetitive Lifting: A Clinically Relevant Biomechanical Cadaveric Study. Amin DB; Tavakoli J; Freeman BJC; Costi JJ Spine (Phila Pa 1976); 2020 Mar; 45(6):357-367. PubMed ID: 31593056 [TBL] [Abstract][Full Text] [Related]
13. ISSLS Prize Winner: Vibration Really Does Disrupt the Disc: A Microanatomical Investigation. Wade KR; Schollum ML; Robertson PA; Thambyah A; Broom ND Spine (Phila Pa 1976); 2016 Aug; 41(15):1185-1198. PubMed ID: 27043193 [TBL] [Abstract][Full Text] [Related]
14. How annulus defects can act as initiation sites for herniation. Wade K; Berger-Roscher N; Saggese T; Rasche V; Wilke H Eur Spine J; 2022 Jun; 31(6):1487-1500. PubMed ID: 35174401 [TBL] [Abstract][Full Text] [Related]
15. The ratio of thoracic to lumbar compression force is posture dependent. Lee PJ; Lee EL; Hayes WC Ergonomics; 2013; 56(5):832-41. PubMed ID: 23510145 [TBL] [Abstract][Full Text] [Related]
16. Torso flexion loads and the fatigue failure of human lumbosacral motion segments. Gallagher S; Marras WS; Litsky AS; Burr D Spine (Phila Pa 1976); 2005 Oct; 30(20):2265-73. PubMed ID: 16227888 [TBL] [Abstract][Full Text] [Related]
17. The effect of nucleotomy on facet joint loading - a porcine in vitro study. Ivicsics MF; Bishop NE; Sellenschloh K; Berteau JP; Morlock MM; Huber G Clin Biomech (Bristol); 2013 Oct; 28(8):853-9. PubMed ID: 24012071 [TBL] [Abstract][Full Text] [Related]
18. The Biomechanics of the Inter-Lamellar Matrix and the Lamellae During Progression to Lumbar Disc Herniation: Which is the Weakest Structure? Tavakoli J; Amin DB; Freeman BJC; Costi JJ Ann Biomed Eng; 2018 Sep; 46(9):1280-1291. PubMed ID: 29786777 [TBL] [Abstract][Full Text] [Related]
19. Effect of changes in lordosis on mechanics of the lumbar spine-lumbar curvature in lifting. Shirazi-Adl A; Parnianpour M J Spinal Disord; 1999 Oct; 12(5):436-47. PubMed ID: 10549710 [TBL] [Abstract][Full Text] [Related]
20. Failure mechanical properties of lumbar intervertebral disc under high loading rate. Liu Q; Liang XF; Wang AG; Liu Y; Jia TJ; Li K; Zhang CQ J Orthop Surg Res; 2024 Jan; 19(1):15. PubMed ID: 38167031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]