BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28786347)

  • 1. KCa3.1 Channels and Glioblastoma: In Vitro Studies.
    Klumpp L; Sezgin EC; Skardelly M; Eckert F; Huber SM
    Curr Neuropharmacol; 2018; 16(5):627-635. PubMed ID: 28786347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of KCa3.1 Channels in Modulating Ca
    Catacuzzeno L; Franciolini F
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30274242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Roles of the Ca2+-activated K+ Channel, KCa3.1, in Brain Tumors.
    D'Alessandro G; Limatola C; Catalano M
    Curr Neuropharmacol; 2018; 16(5):636-643. PubMed ID: 28707595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo.
    D'Alessandro G; Catalano M; Sciaccaluga M; Chece G; Cipriani R; Rosito M; Grimaldi A; Lauro C; Cantore G; Santoro A; Fioretti B; Franciolini F; Wulff H; Limatola C
    Cell Death Dis; 2013 Aug; 4(8):e773. PubMed ID: 23949222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus.
    Wong R; Schlichter LC
    J Neurosci; 2014 Oct; 34(40):13371-83. PubMed ID: 25274816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells.
    Vigneault P; Naud P; Qi X; Xiao J; Villeneuve L; Davis DR; Nattel S
    J Physiol; 2018 Jun; 596(12):2359-2379. PubMed ID: 29574723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proinvasive role for the Ca(2+) -activated K(+) channel KCa3.1 in malignant glioma.
    Turner KL; Honasoge A; Robert SM; McFerrin MM; Sontheimer H
    Glia; 2014 Jun; 62(6):971-81. PubMed ID: 24585442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KCa3.1 Channel Modulators as Potential Therapeutic Compounds for Glioblastoma.
    Brown BM; Pressley B; Wulff H
    Curr Neuropharmacol; 2018; 16(5):618-626. PubMed ID: 28676010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity.
    Sciaccaluga M; Fioretti B; Catacuzzeno L; Pagani F; Bertollini C; Rosito M; Catalano M; D'Alessandro G; Santoro A; Cantore G; Ragozzino D; Castigli E; Franciolini F; Limatola C
    Am J Physiol Cell Physiol; 2010 Jul; 299(1):C175-84. PubMed ID: 20392929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the Ca²⁺-dependent K⁺ channel, KCNN4/KCa3.1, improves tissue protection and locomotor recovery after spinal cord injury.
    Bouhy D; Ghasemlou N; Lively S; Redensek A; Rathore KI; Schlichter LC; David S
    J Neurosci; 2011 Nov; 31(45):16298-308. PubMed ID: 22072681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-gated K
    Tarasov MV; Bystrova MF; Kotova PD; Rogachevskaja OA; Sysoeva VY; Kolesnikov SS
    Pflugers Arch; 2017 Feb; 469(2):349-362. PubMed ID: 28028617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.
    Rosa P; Sforna L; Carlomagno S; Mangino G; Miscusi M; Pessia M; Franciolini F; Calogero A; Catacuzzeno L
    J Cell Physiol; 2017 Sep; 232(9):2478-2488. PubMed ID: 27606467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inhibition of KCa3.1 channels activity reduces cell motility in glioblastoma derived cancer stem cells.
    Ruggieri P; Mangino G; Fioretti B; Catacuzzeno L; Puca R; Ponti D; Miscusi M; Franciolini F; Ragona G; Calogero A
    PLoS One; 2012; 7(10):e47825. PubMed ID: 23110108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Intermediate-Conductance Ca(2+)-Activated K(+) Channels on Human Endometrial Carcinoma Cells.
    Zhang Y; Feng Y; Chen L; Zhu J
    Cell Biochem Biophys; 2015 Jun; 72(2):515-25. PubMed ID: 25608633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K
    Bonito B; Sauter DR; Schwab A; Djamgoz MB; Novak I
    Pflugers Arch; 2016 Nov; 468(11-12):1865-1875. PubMed ID: 27752766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+-Activated IK K+ Channel Blockade Radiosensitizes Glioblastoma Cells.
    Stegen B; Butz L; Klumpp L; Zips D; Dittmann K; Ruth P; Huber SM
    Mol Cancer Res; 2015 Sep; 13(9):1283-95. PubMed ID: 26041939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggressive migration in acidic pH of a glioblastoma cancer stem cell line in vitro is independent of ASIC and K
    Cortés Franco KD; Brakmann IC; Feoktistova M; Panayotova-Dimitrova D; Gründer S; Tian Y
    Pflugers Arch; 2023 Mar; 475(3):405-416. PubMed ID: 36522586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of Decreased Activity in Intermediate-Conductance Calcium-Activated Potassium Channels During Retinoic Acid-Induced Differentiation in Motor Neuron-Like NSC-34 Cells.
    Chen PC; Ruan JS; Wu SN
    Cell Physiol Biochem; 2018; 48(6):2374-2388. PubMed ID: 30114691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Ca(2+)-activated K(+) channel KCa3.1 compartmentalizes in the immunological synapse of human T lymphocytes.
    Nicolaou SA; Neumeier L; Peng Y; Devor DC; Conforti L
    Am J Physiol Cell Physiol; 2007 Apr; 292(4):C1431-9. PubMed ID: 17151145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological targeting of the mitochondrial calcium-dependent potassium channel KCa3.1 triggers cell death and reduces tumor growth and metastasis in vivo.
    Bachmann M; Rossa A; Varanita T; Fioretti B; Biasutto L; Milenkovic S; Checchetto V; Peruzzo R; Ahmad SA; Patel SH; Lukowski R; Edwards MJ; Ceccarelli M; Gulbins E; Zoratti M; Mattarei A; Szabo I
    Cell Death Dis; 2022 Dec; 13(12):1055. PubMed ID: 36539400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.