These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28786449)

  • 1. Molecular self-assembly of substituted terephthalic acids at the liquid/solid interface: investigating the effect of solvent.
    Della Pia A; Luo D; Blackwell R; Costantini G; Martsinovich N
    Faraday Discuss; 2017 Oct; 204():191-213. PubMed ID: 28786449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Born-Haber cycle for monolayer self-assembly at the liquid-solid interface: assessing the enthalpic driving force.
    Song W; Martsinovich N; Heckl WM; Lackinger M
    J Am Chem Soc; 2013 Oct; 135(39):14854-62. PubMed ID: 24003869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption Behaviors of Mixed Monolayers of n-Alkanes at the Liquid-Solid Interface.
    Hibino M
    Langmuir; 2016 May; 32(19):4705-9. PubMed ID: 27124544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of 4,4'-stilbenedicarboxylic acid monolayer self-assembly at the nonanoic acid-graphite interface.
    Song W; Martsinovich N; Heckl WM; Lackinger M
    Phys Chem Chem Phys; 2014 Jul; 16(26):13239-47. PubMed ID: 24870380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly polymorphism of 2,7-bis-nonyloxy-9-fluorenone: solvent induced the diversity of intermolecular dipole-dipole interactions.
    Cui L; Miao X; Xu L; Hu Y; Deng W
    Phys Chem Chem Phys; 2015 Feb; 17(5):3627-36. PubMed ID: 25554245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen bonding versus van der Waals interactions: competitive influence of noncovalent interactions on 2D self-assembly at the liquid-solid interface.
    Mali KS; Lava K; Binnemans K; De Feyter S
    Chemistry; 2010 Dec; 16(48):14447-58. PubMed ID: 21064044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-Dependent Core-Modified Rubyrin Self-Assembly at Liquid/Solid Interfaces.
    Chen C; Zhang S; Tu B; Meng T; Li J; Qian Y; Li P; Liu B; Duan W; Xu H; Zhao F; Peng Y; Li J; Zeng Q
    Langmuir; 2020 Apr; 36(14):3879-3886. PubMed ID: 32212611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant porphyrin disks: control of their self-assembly at liquid-solid interfaces through metal-ligand interactions.
    Lensen MC; Elemans JA; van Dingenen SJ; Gerritsen JW; Speller S; Rowan AE; Nolte RJ
    Chemistry; 2007; 13(28):7948-56. PubMed ID: 17611946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Concentration-in-Control" self-assembly concept at the liquid-solid interface challenged.
    Velpula G; Martin C; Daelemans B; Hennrich G; Van der Auweraer M; Mali KS; De Feyter S
    Chem Sci; 2021 Oct; 12(39):13167-13176. PubMed ID: 34745548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of a self-assembled monolayer decoupled from the substrate: nucleation on-command using buffer layers.
    Reynaerts R; Mali KS; De Feyter S
    Beilstein J Nanotechnol; 2020; 11():1291-1302. PubMed ID: 32953373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent dependent supramolecular self-assembly and surface reversal of a modified porphyrin.
    Zhang X; Xu H; Shen Y; Wang Y; Shen Z; Zeng Q; Wang C
    Phys Chem Chem Phys; 2013 Aug; 15(30):12510-5. PubMed ID: 23764927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of grain boundaries in two-dimensional hydrogen-bonded molecular networks.
    Lackinger M; Griessl S; Kampschulte L; Jamitzky F; Heckl WM
    Small; 2005 May; 1(5):532-9. PubMed ID: 17193483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous and scanning-assisted desorption-adsorption dynamics in porous supramolecular networks at the solution-solid interface.
    Fang Y; Ivasenko O; Sanz-Matias A; Mali KS; Tahara K; Tobe Y; De Feyter S
    Nanoscale; 2023 Mar; 15(9):4301-4308. PubMed ID: 36756798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of long chain alkanes and their derivatives on graphite.
    Yang T; Berber S; Liu JF; Miller GP; Tománek D
    J Chem Phys; 2008 Mar; 128(12):124709. PubMed ID: 18376962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration-dependent supramolecular patterns of C
    Garah ME; Cook TR; Sepehrpour H; Ciesielski A; Stang PJ; Samorì P
    Colloids Surf B Biointerfaces; 2018 Aug; 168():211-216. PubMed ID: 29198983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polymorphism of porphyrin 2D assemblies at the liquid-graphite interface: the effect of a polar solvent additive and a flexible spacer on the face-on and edge-on type molecular arrangements.
    Adachi K; Hirose T; Matsuda K
    Chem Commun (Camb); 2019 Jul; 55(60):8836-8839. PubMed ID: 31157333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of halogen bonded monolayer self-assembly at the liquid-solid interface.
    Song W; Martsinovich N; Heckl WM; Lackinger M
    Chem Commun (Camb); 2014 Nov; 50(88):13465-8. PubMed ID: 25236504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular dynamics study on heat transfer characteristics at the interfaces of alkanethiolate self-assembled monolayer and organic solvent.
    Kikugawa G; Ohara T; Kawaguchi T; Torigoe E; Hagiwara Y; Matsumoto Y
    J Chem Phys; 2009 Feb; 130(7):074706. PubMed ID: 19239308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct differences in self-assembly of aromatic linear dicarboxylic acids.
    Heininger C; Kampschulte L; Heckl WM; Lackinger M
    Langmuir; 2009 Jan; 25(2):968-72. PubMed ID: 19090652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.