These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28786592)

  • 1. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.
    Liu H; Panmai M; Peng Y; Lan S
    Opt Express; 2017 May; 25(11):12357-12371. PubMed ID: 28786592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic dipole super-resonances and their impact on mechanical forces at optical frequencies.
    Liberal I; Ederra I; Gonzalo R; Ziolkowski RW
    Opt Express; 2014 Apr; 22(7):8640-53. PubMed ID: 24718235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks.
    Staude I; Miroshnichenko AE; Decker M; Fofang NT; Liu S; Gonzales E; Dominguez J; Luk TS; Neshev DN; Brener I; Kivshar Y
    ACS Nano; 2013 Sep; 7(9):7824-32. PubMed ID: 23952969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical pulling and pushing forces via Bloch surface waves.
    Kostina N; Petrov M; Bobrovs V; Shalin AS
    Opt Lett; 2022 Sep; 47(18):4592-4595. PubMed ID: 36107040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailing Optical Pulling Force on a Metal-Dielectric Hybrid Dimer with Electromagnetic Coupling.
    Zhang XM; Yu JJ; Wu HP; Zhou X; Zhang TY; Liu JP
    Nanomaterials (Basel); 2023 Aug; 13(15):. PubMed ID: 37570571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient-induced long-range optical pulling force based on photonic band gap.
    Lu W; Krasavin AV; Lan S; Zayats AV; Dai Q
    Light Sci Appl; 2024 Apr; 13(1):93. PubMed ID: 38653978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays.
    Wang G; Han Z
    Beilstein J Nanotechnol; 2023; 14():674-682. PubMed ID: 37284552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Pulling Using Chiral Metalens as a Photonic Probe.
    Peng M; Luo H; Zhang Z; Kuang T; Chen D; Bai W; Chen Z; Yang J; Xiao G
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fano resonance-induced negative optical scattering force on plasmonic nanoparticles.
    Chen H; Liu S; Zi J; Lin Z
    ACS Nano; 2015 Feb; 9(2):1926-35. PubMed ID: 25635617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices.
    Li H; Xu Y; Xiang J; Li XF; Zhang CY; Tie SL; Lan S
    Nanoscale; 2016 Dec; 8(45):18963-18971. PubMed ID: 27808340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation pressure of active dispersive chiral slabs.
    Wang M; Li H; Gao D; Gao L; Xu J; Qiu CW
    Opt Express; 2015 Jun; 23(13):16546-53. PubMed ID: 26191666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical pulling using evanescent mode in sub-wavelength channels.
    Zhu T; Mahdy MR; Cao Y; Lv H; Sun F; Jiang Z; Ding W
    Opt Express; 2016 Aug; 24(16):18436-44. PubMed ID: 27505807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulling cylindrical particles using a soft-nonparaxial tractor beam.
    Novitsky A; Ding W; Wang M; Gao D; Lavrinenko AV; Qiu CW
    Sci Rep; 2017 Apr; 7(1):652. PubMed ID: 28381822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sharp bending and power distribution of a focused radially polarized beam by using silicon nanoparticle dimers.
    Deng F; Liu H; Panmai M; Lan S
    Opt Express; 2018 Aug; 26(16):20051-20062. PubMed ID: 30119321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory.
    Bian X; Gao DL; Gao L
    Opt Express; 2017 Oct; 25(20):24566-24578. PubMed ID: 29041401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional Fano resonance in a silicon nanosphere dimer.
    Yan J; Liu P; Lin Z; Wang H; Chen H; Wang C; Yang G
    ACS Nano; 2015 Mar; 9(3):2968-80. PubMed ID: 25683067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable optical pulling force mediated by resonant electromagnetic coupling.
    Guo G; Feng T; Xu Y
    Opt Lett; 2018 Oct; 43(20):4961-4964. PubMed ID: 30320794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional scattering and multipolar contributions to optical forces on silicon nanoparticles in focused laser beams.
    Länk NO; Johansson P; Käll M
    Opt Express; 2018 Oct; 26(22):29074-29085. PubMed ID: 30470074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum strength levels for pulling and pushing handleless cartons in warehousing tasks.
    Chen YL; Ho TK; Chen KL
    Ergonomics; 2021 Sep; 64(9):1174-1182. PubMed ID: 33938408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.